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Self-organized pattern formation in motor-microtubule mixtures

Sumithra Sankararamérand Gautam 1. Mendn
The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600 113, India

P. B. Sunil Kumaf
Department of Physics, Indian Institute of Technology Madras, Chennai 600 036, India
(Received 24 November 2003; revised manuscript received 5 April 2004; published 16 September 2004

We model the stable self-organized patterns obtained in the nonequilibrium steady states of mixtures of
molecular motors and microtubules. In experimdinédélecet al., Nature(Londor) 389, 305(1997; Surrey
et al, Science292, 1167(2001] performed in a quasi-two-dimensional geometry, microtubules are oriented
by complexes of motor proteins. This interaction yields a variety of patterns, including arrangements of asters,
vortices, and disordered configurations. We model this system via a two-dimensional vector field describing the
local coarse-grained microtubule orientation and two scalar density fields associated to molecular motors.
These scalar fields describe motors which either attach to and move along microtubules or diffuse freely within
the solvent. Transitions between single aster, spiral, and vortex states are obtained as a consequence of
confinement, as parameters in our model are varied. For systems in which the effects of confinement can be
neglected, we present a map of nonequilibrium steady states, which includes arrangements of asters and
vortices separately as well as aster-vortex mixtures and fully disordered states. We calculate the steady state
distribution of bound and free motors in aster and vortex configurations of microtubules and compare these to
our simulation results, providing qualitative arguments for the stability of different patterns in various regimes
of parameter space. We study the role of crowding or “saturation” effects on the density profiles of motors in
asters, discussing the role of such effects in stabilizing single asters. We also comment on the implications of
our results for experiments.
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[. INTRODUCTION organized radial structures called astg¥p Single asters, in
The mitotic spindle in a dividing eukaryotic cell is com- addition to other complex patterns such as vortices, disor-
prised of several millions of interacting protein moleculesdered aster-vortex mixtures, and lattices of asters and vorti-
[1]. Remarkably, these molecular constituents self-organizees, are also seein vitro, in experiments on mixtures of
to yield patterns at the scale of micrometers. The existence aholecular motors and microtubulgS]. Features of mitotic
such self-organized nonequilibrium structures at the subcekpindle formation are reproduced in mixtures of motors, mi-
lular scale is a common feature of biological systems. Suclerotubules, and gold beads coated with DI8}. The fact
structures include the endoplasmic reticulum and the Golgihat such experiments are able to mimic the complex self-
complex, membrane-bound organelles which participate irganized states seen in living cells indicates that simple me-
intracellular trafficking. They also include the Cytoskeleton, asoscale models which work with fewer components may be
cell-spanning network of polymers such as actin filamentsyseful in capturing some aspects of cellular pattern formation
intermediate filaments, and microtubulés. [7]. In this context, Nédélec and collaborators have studied
An individual microtubule is a polar object: microtubule pattern formation in mixtures of complexes of conventional
ends, labeled as — and +, grow and shrink at different rateginesins with microtubules in a confined quasi-two-
[2] This polarity dictates the direction of motion of a class Ofdimensiona| geometrw]_ The |ater experiments Of Surrey
molecular motor proteins on microtubules. Motor proteinsy). investigate pattern formation in larger systems where the
such as kinesins use energy derived from adenosine triphogffects of boundaries appear negligipd3. The experiments
phate (ATP) hydrolysis to exert forces and to translocate gre supplemented by simulations which reproduce many fea-
along minOtUbUlqu]. The directed motion of individual tures of the experimen@ys_l:u_ The theoretical work de-
molecular motor proteins is thus a nonequilibrium phenom-scribed in this paper addresses the modeling of these experi-
enon. ments.
Experiments on centrosome-free fragments of the cytosol This paper presents a theory of pattern formation in mix-
containing both motors and microtubules obtain self-tyres of molecular motors and microtubules in a confined
geometry. We motivate and numerically solve hydrodynamic
equations of motion for a coarse-grained field representing
*Present address: Department of Physics, University of lllinois athe local orientation of microtubules as well as for local mo-
Chicago, 845 W. Taylor St., Chicago, IL 60607-7059, USA. Email tor density field§12]. In our theoretical description, as well

address: sumithra@nic.edu as in the experiments, microtubules are oriented by com-
"Email address: menon@imsc.res.in plexes of bound motors, yielding patterns at large scales
*Email address: sunil@physics.iitm.ac.in [13].
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Our approach is closest in spirit to that of Lee and Kardarffield is then theorientationfield for the microtubule at fixed
(LK) [14]. The LK model is a hydrodynamic description of density, as in the LK mod€gl16,17.
two coupled fields. One of these is a two-dimensional vector Detailed information regarding the ordering of microtu-
field describing the coarse-grained orientation of the microbules in the presence of molecular motors has come from the
tubule. The other is a conserved scalar field representing thextensive simulations of Nédélec and collaborafér8—1Q.
local motor density. The LK model captures two prominentThese simulations, performed in a two-dimensional geom-
features of the experiments of Nédékdal.. the presence of etry, obtain asters and vortices, in addition to relatively dis-
stable vortices formed by microtubules and the instability ofordered configurations in which both asters and vortices are
an aster formed in the early stages of pattern formation to @aresent. However, the best simulations require as many as 19
single, stable vortex at large motor densities. parameters to be specified; these include fluid viscosities,

However, despite this success of the LK model, severaiotor diffusion constants, binding strengths, and microtu-
features of the experiments are incompletely understood. Thieule bending rigidities. The uncertainties in these parameters
transition between a single aster and a single vortex seen @re fairly large, often of an order of magnitude or more; it is
the experiments appears to be driven primarily by confineunclear which of them are crucial to pattern formation and
ment effects in small systems. In the LK model, confinementvhich others play a secondary role. In contrast, the hydrody-
does not appear to play a vital role, and the single aster tnamic approach of this paper uses far fewer parameters, thus
single vortex transformation is a generic feature even foenabling efficient scans of parameter sppc&-21].
large system sizes, at large motor densities. Experiments ob- We summarize our results here. In a regime of parameter
tain a variety of stable steady states on large systems asspace for our model which is closest to that for the LK
function of motor density. These include a “lattice of asters”’model, we obtain a single vortex as a stable final state for
state in which asters are the only stable structures, a “latticirge motor densities. Our results here coincide with the LK
of vortices” state, in which individual vortices are stable results. However, in other regimes, asters are favored. A “lat-
while asters are absent, as well as an intermediate “astefice of asters” state is stabililized in our model through a
vortex mixture” state. The LK approach predicts that a singldow-order relevant term in the equation of motion for the
vortex should be the stable state at large motor densities evéRicrotubule orientation. On small systems, constraints due to

for very large systems. Experiments, however, always see ¢Pnfinement favor a small number of asters, whose number
“lattice of asters” in this regime can be increased systematically as parameters are varied.

The LK model predicts that motor density profiles in as- We calculate the distribution of free and bound motors in

ters are always simple decaying exponentials, independent ﬁfters and vortices obtained in our model. Our results for

the rat t which motors h n and off the filament. How. otor profiles about asters differs from both the LK result
€ rates a otors nop on and off the fliament. HOW=, 4 tha NSM one. We derive an exponential decay of bound

ever, experiments and thepretical wo_rk suggest more CoN, 4 densities away from aster cores, modulated by a
plex decays. Such decays include the intriguing possibility o5 ver jaw in which the exponent of the power law depends

power laws with exponents which vary continuously as &p g nonuniversal way on dynamical parameters. The associ-
function of the on-off hopping rates. Nédélec, Surrey, andyteq decay length for the exponential can become very large
Maggs(NSM) derive equations for motor profiles around ajn some regimes of parameter space, yielding what would
single preformed aster, showing analytically that such progppear to be pure power-law decays close to the aster core.
files are pure power law in natuf@5]. The NSM equations For vortices, we obtain results equivalent to the LK results.
describe asingle aster configuration composed of a fixed We obtain, numerically, the solutions to our equations
number of inwardor outward pointing microtubules. As a when “crowding” effects due to the interactions of motors
consequence, the density of microtubdlecreasesadially = moving on microtubules are accounted for in a simple way.
outward from the aster core. Such effects distribute the motor density more uniformly
The NSM equations describe motors as either freely difalong the microtubules. We argue that the inclusion of such
fusing in the solvent or bound to and moving along a micro-“crowding effects” should further act to favor asters over
tubule. These states are allowed to interconvert. Since theortices in finite systems. We adduce simulational evidence
free motors become bound only in the presence of a microfor spiral structures favored by confinement and point out
tubule, the conversion rate should be proportional to the lothat the microtubule configurations seen in experiments do
cal microtubule density. This yields a nontrivial space depenfesemble spirals in many cases.
dence for this conversion rate, which is responsible for a We discuss in some detail the nature of pattern formation
power-law decay of motor densities predicted by NSM.in systems where the effects of boundaries can be neglected.
However, NSM do not address issues of pattern formation. l©ur model generates all the patterns seen in experiments,
the NSM model the densities of bound and free motors arsuch as the aster-vortex mixture, the “lattice of asters,” and
governed by separate equations. LK, in contrast, use a singtae “lattice of vortices”[22]. We show how these states are
equation for the full motor density field which is effectively linked in the nonequilibrium “phase diagram” of Fig. 1, dem-
the “sum” of these equations, but ignore the dynamics of th@nstrating how smooth trajectories in parameter space can
difference field. connect the states observed, in agreeement with the experi-
We suggest here, in contrast to NSM, that at the lengthments[23]. Figure 1 is relevant to experimental data in that it
scales appropriate to a coarse-grained hydrodynamic descriphows how a relatively small number of parameters may suf-
tion of pattern formation and at the densities of microtubuledice to fix the macroscopic state of the system.
in the experiments, it is appropriate to ignore fluctuations in  The outline of this paper is the following. In Sec. II, we
the local density of microtubule. The relevant fluctuatingdescribe the details of our model. Section Il presents results
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€ ported along the microtubules. The free motor figdobeys

a diffusion equation with a diffusion constat These two
fields are coupled through mechanisms which convert “free”
motors to “bound” motors, and vice versa. The equations
they obey have the form

Lattice of Vortices

2 single Jmp = DV2Me = M + 3¢ My, (1)
S by Vortex

[=]

2 amy=—AV - (MyT) + ¥ oM = vp 5 M. (2

v._.; and y;_, are the rates at which free motors become
bound motorg“on” rate) and vice versg“off” rate). These
rates have dimensions of inverse time. Note that tttal
motor density fieldn=my(r)+m(r) is a conserved field.

The termAYV -(m,T) describes the motion of bound mo-
tors along microtubules with veloci#. While the ratey;
should depend on the local density of microtubules, we will
assume that microtubule density fluctuations are suppressed
at the scales relevant to a hydrodynamic description and re-
. . . .. tain only the orientational degree of freedom of the local
FIG. 1. Qualitative map of steady states, illustrating how differ- H&icrotubule field. We work in two dimensions throughout,

ent states, the disordered state, the aster-vortex mixture state, tl th . t f d i tw
lattice of vortices state, the single vortex, the lattice of asters, domiS'nce € experimenis were periormed In a quasi-iwo-

nate in different regimes of parameter space; for a definition oid'mens'onal ggometryl3]._ . )
parameters see text. The parametés plotted on they axis, with The dynamics of the microtubules, given by the equation
the total motor densityn plotted on thex axis. The parametes  D€low, incorporates the terms used by Lee and Kardar in
extends out of the-m plane. Of the states shown, the lattice of SPECIfic limits. It also includes one additional term. As in the
asters is obtained generically for nonz&eout of the plane of the LK model, we ignore fluctuations in the density of microtu-
figure), whereas the other states are associated witiStieplane,  bules, concentrating on their orientational degrees of free-
although they appear to survive provid&ds small enough. dom. The hydrodynamic equation includes terms which re-
flect the dynamics of individual microtubules. We take these

from our numerical simulation of the equations of motion for ©© be stabilized at unit length. It also includes motor-
different boundary conditions(Our simulation techniques mdependent and m_o_tor_-dependent orientation terms. In prin-
are described in an appendi¥Ve present results for systems CiPI€, for a nonequilibrium problem, all symmetry allowed
in which the effects of confinement are important as well ad€rms must figure here. Of these terms, we will incorporate
for large systems, where confinement is irrelevant and th@nly the lowest-order symmetry allowed terms whose contri-
boundary conditions may be changed without affecting thutions can t_>e justified transparently on physical grounds.
patterns which form in the bulk. In Sec. IV, we present ana- ©OUr equation then reads

!ytic_and numerical results for th_e prof_ile of motor densities GT=T(a—BT2)+ymV2T +9 Vm,- VT +«'V2T

in single vortex and aster configurations. Section IV also ’

discusses how saturation effects resulting from the interac- +SVm,. 3
tions of .bouncril motorls aﬁfcts motor densﬂy prof!les. S,eCt'O’f‘l'he first termT(a— BT 2) governs the stabilization of the
\acomlbmest eb'fl?su t? 0 Secs.o:ll and IV in ? d'SCPSS'OrW microtubules at a preferred length af 8, which we will
the r_z at|ve_sta| lity o aste:c anh vortegl_con ;gdg;ranons. Chormalize to unity. The second and third termsy, V2T
provide a simple argument for the stability of diferent pat'+y’Vmb-VT are alignment terms, reflecting the alignment
terns as parameters in our model are changed. The conclu

) . . ; f microtubules due to the action of bound motors. The third
Ing section, S.ec.:.. VI, summarizes the results of this study angy, s a1so interpretable as a “convective” term, in which
outlines possibilities for further work.

the local velocity which convects fluctuations in thefield
is proportional to the gradient of bound motor density.
Il. MODEL The fourth term«’'V2T describes an intrinsic stiffness
against distortions, allowing tubules to form an ordered
Our model treats motors attached to microtubules differphase in the absence of thermal noise, even at zero motor
ently from motors which diffuse freely in solution. Motors density. Such a term should always be present in thermal
which move on microtubules are referred to as “bound” mo-equilibrium, although the experiments indicate that its effects
tors, while those which diffuse in the ambient solvent areare small at the temperatures at which the experiments are
referred to as “free” motors. These are described by coarselone. The last term is a symmetry allowed term of linear
grained fields denoted liy, andmy, respectively, and obey order in the fields. Physically, such a term derives from the
different equations of motion. In the absence of interconvertendency of motors to bring initially parallel-oriented micro-
sion terms changing a bound motor to a free matgrobeys  tubules together, creating a nonzero divergence in the local
a continuity equation involving the current of motors trans-tubule configuration. This term can be derived from a “free

T S e ——
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energy” term(see Sec. V for a more detailed discussion ofmuch larger sizefL=100), where boundary effects are neg-
this energeticewhich favors a net divergence in the tubule ligible.

configuration. Such physics is a feature of the simulations The configurations of most relevance to our discussion are
but is not directly incorporated in the LK model. Note that aasters, vortices, and configurations intermediate between the
few terms allowed by symmetry have been intentionally ex-two, referred to here as spirals. An aster configuration is the
cluded. These include the term,V(V-T); such a term has unit vector field described ab=-f, describing a radial con-

an effect equivalent to th€m, term of the equation above figuration of inward pointing unit vectors. A vortex, on the

which is lower order in gradients. , other hand, is descibed by=6. A spiral configuration is
In ihe LK model the coefﬂmelntsy andy’ are tal_<en o be described by the unit vector field=T, F+T9A0 in which T,

equal. Thus, the second and third terms can be interpreted IhdT. take the forms

terms of the functional derivative of a “free energy” term. In 0

general, however, away from thermal equilibrium, these two T, =-cofa), T,=sina), (7)

coefficients differ and we may explore the regimes of param- ) ) . .

eter space in which their relative strengths vary. For conveWWherea is a constant. This contains both asters and vortices

nience we choose’ =ey and vary the parameter to tune in appropriate Iimits_: In the I?m?ta:O, this equqtion _de—
the ratio of these two terms. scribes an aster, while in the limit=7/2, the configuration

The following transformation simplifies the equations is a vortex. Thus asters and vortices are particular limiting

considerably: scale length in units B AVB/a, time in units ~ €2S€s of more general spiral states.

of 8D/ (aA?), motor density in units ob/y, and tubule den- _ We work at a fixed large motor density ofi=m,+m

L : , . =0.5. We work at fixed values of,_,:=v;_,,=0.5 here but
lal B. Th hen r . b—f= /t-b .
sity in units of ya/ /8. The equations then reduce to have checked that making the motors more or less processive

Ame = V2 = y_gMs + vt My, (4)  does not alter our results qualitatively. For motors with very
small “on” and “off” rates, we see disordered states best
Ay ==V - (MyT) + Y5Mf = Yoo Mo, (5) described as aster-vortex mixtures. The patterns obtained

here emerge at still higher motor densities for low values of
_ 12 2 _ 2 the processivity. We work with a small value #f(x=0.05
GT=CTA-TH+mVT +eVmy,- VT +«VT +SVm,. here, such that the magnitude of the self-alignment term
(6)  kV2T is small compared ton,V2T.

The parameteC given by BD/A? is the growth constant. _ N
v_p and y, ¢ are scaled in units of inverse time’ is 1. Reflecting boundary conditions

appropriately scaled to=«'/D andS=S'(8D)/(ayA). Note Our results for reflecting boundary conditions are shown
that the scaled equations for the free and bound m@Exgs.  in Figs. 2a)-2(d). Each column represents a different value
(4) and(5)] are invariant when the motor densities are mul-of S, i.e., (a) S=0, (b) S=0.05,(c) S=0.5, and(d) S=2. We
tiplied by a constant. We will use this invariance in Sec. IV Cvary the parametes in these scans, with taking the values
to compare analytic results for motor density profiles withe=0.0, 0.5, 1.0, and 5 as shown.
results from numerical simulations. In Figs. 2a)-2(d), the effects of varying with reflecting
We relate our scaled parameters to typical experimentaboundary conditions are the following. In Figia®, S=0 and
values in the following way. The tubule density, scaled inthe steady state configuration&t0 is an aster with tubules
terms ofVa/B, is chosen to be unity. The diffusion constant directed radially inward toward the core. Wheis increased
D is about 20um?/s andA~ 1 um/s, defining basic units of to 0.5, the configuration resembles a “spiral.” Ass in-
length and time as 2@m and 20 s, respectively. A tubule creased further the spiral distorts into a vortex. In Fidp),2
density of 1 implies that over a coarse-graining length ofwe show configurations at small but nonz&®=0.05. The
400 pm?, there are around 400 microtubules, a value close tgingle aster is stable far=0 and 0.5, but yields to a single
that used in the simulationg8]. Our choice fory; ., and  vortex for largere. A general observation is that the core of
Y.t corresponds to physical rates of 0.00% ® 0.05 S*,  the vortex is increasingly distorted ads increased further.
slightly smaller than those in the simulatiofi$0]; using Figure 2c) shows steady state configurationsSat0.5. A
larger rates does not affect our conclusions here. tendency toward the formation of a lattice of asters is appar-
ent, ase is increased at these values®fThis is consistent
with our earlier results on large systems, where we observed
Ill. RESULTS AND DISCUSSION: NUMERICAL that nonzerds always promoted the lattice of asters. At large
€, e.g.,e=5, there is a pronounced tendency toward align-
ment, yielding a steady state pattern of a vortex with a highly
This section presents the results of our simulations in difdistorted core. Figure (8) shows configurations a=2,
ferent regimes of parameter space for the boundary condivhere the lattice of asters is present at all values stiown.
tions discussed above. The simulations discussed here are Anlarge ¢, the tendency toward parallel alignment competes
systems of sizeL=30, corresponding to physical length with the tendency toward aster formation. At still larger val-
scales of about 6@m. Our results on somewhat larger sys- ues ofe, we obtain an aligned phase in the bgflot shown,
tems (L=50) are intermediate in character between the reteminiscent of the “bundles” seen in the experiments at large
sults forL=30 presented here and our results on systems ahotor concentration.

A. Confined systems
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e,

figurations at the boundéwe term

ubules pointirmutward at the core,
f the boundary conditions which favor

0. Asingle vortex is obtained as a steady

NS
R

=2.

Figure 4a) shows pattern formation with parallel bound-

uch configurations as “outward asteyClearly these arise

5, the steady state is a well-formed, clean vortex. Figure

At very high e, we obtain an unusual configuration which

vortices and the parameter regime which favors astere. At
4(c) illustrates pattern formation &=0.5, as a function o¢.

We see a tendency toward the formation of the lattice of
although indications of this are seen even for snaall

rFigure 4b) shows patterns fob
as a consequence 0

thetate at all values ot shown, i.e.,e
&

031905-5

gurations,
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In vortex confi

the bound motor densitylS @ single aster with t

decaying to a smiit aligned with the con

4(d)]. These are

2(d). Note that qualitatively
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2. Parallel boundary conditions
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FIG. 2. Steady-state configurations of microtubules with reflecting boundary conditions. The parametars0d&reand y;_.p= yp_.

0.5. Patterns are shown at differenat (a) S

Figures 8a)—3(d) show bound motor density profiles cor- tions. This illustrates the sensitivity to boundary conditions
responding to the microtubule arrangements of Figswhich obtains for sufficiently small system sizes

2(d). Lighter regions of the figure indicate regions of > -
larger density. Note that the bound motor density is concenary conditions at

2(a)—

trated at the centers of asters.

motor density profile

the

“lattice of asters

profiles peaks at the centers of the asters,
value at intermediate points far away from aster cores. Th

profiles of free motor densities are visually very similar to

those for bound motors and are not shown here.

We now discuss pattern formation in finite systems withasters phase expected for lar§efor sufficiently largee,

parallel boundary conditionsee Figs. &)—

to be contrasted with Figs(&-

ues of other parameters, depending on the boundary condbutward near the core while merging with the imposed par-

different sequences of patterns are stabilized at identical valve term a “flag.” In this configuration, tubules point radially
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(a) (D) (C)
: - - -
80-5- - - -
- - - - -
) _ -

FIG. 3. Steady state bound motor density profiles with reflecting boundary conditions. The parametarsOdseand y;_.p= yp_+
=0.5. Profiles are shown at differeatat (a) S=0, (b) S=0.05,(c) S=0.5, and(d) S=2. The darker regions indicate regions of lower motor
density.

(d)

allel microtubule configuration near the boundary. Howeverfree motor densities are again visually very similar to those
the configuration appears to have a fourfold axis, in whichfor bound motors and are not shown here.

the axis lines are along the diagonal. Across this axis, the
microtubule orientation changes sharply. This fourfold sym-
metry reflects the fourfold symmetry of the simulation box.

3. Discussion

Finally, Fig. 4d) shows patterns formed &=2. In this re- Our results for the cases outlined in the preceding subsec-
gime, the lattice of asters is the stable steady state for ation are summarized as follows. For reflecting boundary con-
values ofe. ditions, we obtain the general sequence astspiral— vor-

Figures %a)—5(d) show bound motor density profiles cor- tex atS=0. This sequence is obtained at fixed motor density,
responding to the microtubule arrangements of Figsas a function of the nonequilibrium parameteiVith paral-
4(a)—4(d). Note that the density distribution in single vortices lel boundary conditions, the patterns formed are generically
varies smoothly, consistent with theoretical expectations. Thegortices, although the region surrounding the core is progres-
profiles appear sensitive to the boundary and a fourfold rosively distorted ag is increased. Finit& favors the forma-
tation axis can be seen in several of the patterns which intion of a lattice of asters, as in large systems. We observe
volve a single vortex. The patterns for nonzero and l&8ge some unusual configurations such as the “flag” configuration,
are very similar to those obtained for reflecting boundaryreflecting the fourfold symmetry of the simulation box and
conditions with similar values of parameters. The profiles ofthe outward aster.
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to be no evidence that motor-independent alignment

may be more noticeable in experiments performed at signifi-
cantly higher densities of microtubule than have been at-

along a particular direction is formed at alland S values.
The lattice of asters does not appear herexAD.5, with

0, (b) S=0.05,(c) S=0.5, and(d) S
031905-7

(a)

spirals arise as a consequence of th@Vhile the value of« appears to be too small in the experi-
Indeed, inspection of the configurdaoundary conditions, a phase which has tubules aligned

o

SELF-ORGANIZED PATTERN FORMATION IN MOTOR-.

FIG. 4. Steady state configurations of microtubules with parallel boundary conditions. The parametersOaeand y;_.p

0.5. Patterns are shown at differenat (a) S

In our simulations
competition between the vortex configurations favored lo4ments to significantly affect pattern formation—there seems

cally for intermediate and large values efand reflecting

boundary conditions, which favor asters. Spirals offer theoccurs—we find that using small values efhelps us to

best compromise between these and it is reasonable to expeggnerate somewhat smoother pattgrAs expected physi-

that such states should be more generically seen than eitheally, for large « (

asters or vortex states.
tions associated with the “lattice of vortices” in RE8] pro-

vides strong visual evidence for generic spiral states.

The bound and free motor profiles we obtain in the simu-reflecting boundary conditions, the lattice of asters phase ap-

lations are consistent with expectations from our theoreticapears at sufficiently larg&. With parallel boundary condi-

density profiles associated with asters are replaced by fdorms into the lattice of asters phase at highn summary,

analysis(see below. The characteristic sharp peaks in motortions, a single vortex appears at levandS

more slowly varying profiles for vortices. The lattice of as- the x term competes with the motor-

therefore has strong signals in the motor distributiorment terms; in regimes in which it dominates, it favors par-

function. Appropriate experimental labeling of motors in thisallel alignment of microtubules leading to a pattern consis-

ters

phase should yield patterns and profiles closely similar tagent with the boundary conditions. The effects of such a term

those displayed here.

We have also examined the effects of varyirg the
motor-independent self-alignment term for microtubules.tempted so far.
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_(b) («d

FIG. 5. Steady state bound motor density profiles with parallel boundary conditions. The parameterOd&eandys_,=y,_.+=0.5.
Profiles are shown at differestat (a) S=0, (b) S=0.05,(c) S=0.5, and(d) S=2. The darker regions indicate regions of lower motor density.

B. Pattern formation in large systems =100 lattice. Figure @) shows a disordered arrangement of

This section presents the results of our simulations in difmicrotubules obtained at very low motor densitiés
ferent regimes of parameter space on large systems tharD.009 with e=0.5 andS=0. Figure gb) shows an aster-
those discussed above. These simulations are on systems\@frtex mixture obtained an=0.01 at the same values ef
sizeL=100-200, corresponding to physical length scales ohnd s, Note the presence both of well-formed asters and of
about 200—-40Qum. In these systems, generically, the nature,qrtices in the configurations. This figure is to be contrasted
of the patterns formed appears to be independent of th Fig. §c), obtained am=0.05, takinge=5 andS=0.001.

boundary conditions used whether such boundary condition(sOte the absence of asters in this regime of parameter space
llel, reflecti . Wi h ize. ) . . . '
are parallel, reflecting, or random. We may thus summariz inally, Fig. Gd). obtained withm=0.5, e=1, andS=1, il-

our results in a nonequilibrium “phase diagrariFig. 1),

illustrating the nature of patterns formed as our three maifustrates a lattice of asters, with asters being the only stable
parametersn, €, andS are varied. defects present. We can vary the sizes and numbers of asters

Figures 6a)—6(d) depict four stable configurations ob- obtained in configurations such as the one shown in Fig.
tained in different regimes of parameter space forlan 6(d), by changingS. A larger S yields a large number of

031905-8
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SELF-ORGANIZED PATTERN FORMATION IN MOTOR-.

FIG. 6. Steady state configurations in our model at different parameter (ake$ext (a) Disordered states obtained at very low motor

0.5 andS

0.01,e=

vortex mixture obtained an

=0.005€=0.5 andS=0); (b) aster-
5 andS=0.002); (d) lattice of asters obtained &n

densities(m

=1 andS=1).

0.5,¢

sufficiently smal) plane in the disordered phase and transits
between the aster-vortex mixture and the lattice of vortices

Our results are summarized in Fig. 1 which shows thgboth of which lie in this planeas m is increased. Asn
states that dominate in the three-dimensional space spanngttreases further and the effects of higerm become impor-

small asters, while smaller values $fyield a smaller num-
by €, S, andm. For S

ber of large asterfl5].

lar motors such as nonclaret disjunctiogBICD). At y;_

0, we obtain aster-vortex mixture tant, such a trajectory moves out toward nonzgrencoun-

ces at somewhat higher motor densities. Large values of We have also examined the effects of changing the motor

e(e=1) yield well-formed vortexlike configurations while processivity, a quantity proportional to the ratio gf ., to
small e yields structures better described as aster-vortex mix,_.¢. Smaller values of this ratio are appropriate to molecu-

tures. At intermediate values afand m, spirals rather than

vortices appear to dominate. At large with S

states at low motor density, which become a lattice of vorti-tering the lattice of asters.
€, a single vortex is obtained.4].

0.005y, .1=0.05,

0 and large

shown in Fig. 1 expands, so that at equivalent valuesof

For nonzero but smalf, these states appear to continuedisordered states occupy much of the domain associated pre-

out of theS

the sequence disordered — lattice of vortices—aster-vortex

mixture—lattice of asters am is increased, a mixture of mi-

thus understand the sequence of patterns formed upon ierotubules with NCD motors bypasses the lattice of vortices

creasingm in mixtures of kinesin constructs with microtu- altogether, transiting directly from the disordered state to the
lattice of asters in the experimen8. In terms of Fig. 1, the

0 plane but are rapidly replaced by a lattice of viously with the lattice of vortices. Whereas kinesins follow

asters for large8. A cut of Fig. 1 at finiteSyields disordered

states at smalin and a lattice of asters at larger. We can
bules in terms of a trajectory which begins in 820 (or S

031905-9
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expanded regime of disordered states for the NCD motothat certain classes of defects dominate over others and that
suggests that patterns such as the lattice of vortices and tlie precisely what our approximate classification of the differ-
aster-vortex mixture may be inaccessible at the motor densent states highlightg25].

ties at which the experiments are done, since the effects of

the S term might be expected to dominate at large IV. ANALYTIC RESULTS FOR MOTOR PROFILES IN

ASTER AND VORTEX CONFIGURATIONS
Discussion . .
We now present an analytic calculation of free and bound

_ Alarge number of disordered steady states are seen in theqor gensity profiles in vortex and aster configurations. We
simulations. Physically, these states arise because the dong gingle vortex and aster configurations of microtubules and

nant contribution to the stiffness to distortions in téield ~ g4ye for steady state free and bound motor densities in the
comes from the motors; it is low in regions depleted of mOtorpresence of the fixed microtubule configurati@e].

density and large in regions where many motors are present. \ve find steady state solutions of Eq8) and(5) by set-

Since bound motors are convected along the local tubulﬁng the time derivatives to zero i.em=dm,=0. Adding
direction, large inhomogeneities in the local motor density,,q subtracting these equations wef obtatin

occur in the final steady statésuch as in the “core” of the

aster$, with the precise character of the final configuration V2me- V -(m,T) =0, (8)
dependent on the initial condition. Such “arrested” states
have also been discussed in other contexts earlier, as well as V2me + (v My — ¥5_p M) = 0. 9)

in this particular one by Lee and Kardgt4]. Thus, it is ] ] o

natural that the patterns obtained at low motor densitied Ne first of these equations implies that

should then be inhomogeneous and disordered, and that a Vm=m,T +C, (10)

large number of steady states should thus be generated, de-

pending on the initial pattern of microtubules and of motorswhereC is an arbitrary vector whose divergen€eC=0.
We now comment on the topological attributes of the pat- A

terns we observe, since asters and vortices are conventionally A. Single vortex, i.e., T=0

thqught of as topological quects. We stress the following Assuming radial symmetry, we may writem,

point: Describing configurations usefully in terms of smooth A )

and singular(topologica) deformations presupposes a uni- ~Mi(Nandm,=my(r). Let C=c;f+c,0. Equation(8) then

form minimum energy state. To ensure this, the “spin stiff-Implies

ness” or equivalently the elastic cost for deformations must

be nonzero. In this problem, the local motor density provides

the dominant contribution to the stiffness. In regions whereHence

such motor densities are either low or vanish altogether, or

where weak noise is sufficient to suppress local ordering, Cr = dm andcy = —m,. (12

fchere is sjmply no pgnalty for making_arbitrary QeformationsThe constraint of zero divergence feryields

in the microtubule field. A second difficulty with a purely

topological approach to the formation of patterns is that as-

ters and vortices are topologically speaking, entirely equiva-

lent. (Take an aster and rotate all arrows by 90° — a vortex

is then generatefHowever, the motor density fields associ- Sincec,=-my(r) is purely radial

ated with asters and vortices are not identical. This provides 9= 0 (14)

a mechanism for stabilizing either asters or vortices in dif- 00—

ferent regimes of parameter space, since the motor densityquation(13) then becomes a radial equation

fields are also dynamical fields and obey their own respective

eq_uations of motion. As_ regards how these may be dist_in- a,c, + G 0. (15)

guished: asters and vortices are represented by local regions r

in which the coarse-grained microtubule field is either TePre cing c.=4 M. we obtain

sented by a purely radial unit vectoor by a purely tangen- 9C=0r Mk,

tial one @ respectively. Such configurations have no global V2m =0, (16)

topological significance, as explained earlier but can easily | )

be identified locally, either numerically or even visualgs ~ Which supports solutions of the form

in the experiments as the pictyres of Fig. 6 corr_obor.ate. me(r) = ¢, +¢, In(r), (17)
There are other defects which are also seen in this model.

We note that all the defects seen in Fig. 6 can be describe@herec; andc, are constants to be determined by boundary

by 6(¢)=SX ¢+C in cylindrical polar (r,¢) coordinates. conditions and normalization.

HereSis the winding number, +1 for astefwith C=0) and Equation(9) now simplifies to

vortices(with C=1/2). All other defects seen in Fig. 6 are _ —

obtained by setting=-1 and choosing in the intervalC Yoot Mo~ ¥5pMy =0 (18)

=0 to 7/2. However, it is equally obvious from the figure which yields

dm T = mbb+ c f+ c,,b. (11)

c 1
0rcr+?+F00CH:0. (13)

031905-10
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Vb the equation above is a combination of confluent hypergeo-
my(r) = E[Cl +¢z In(r)]. (19 metric functions and has the form
We must determine the constantsandc,. There is no radial
current of motorgbound or freg¢in the vortex configuration.
The condition of no radial current of free motors at the
boundary implies

2 1
my(r) = -\ bﬂf+47fﬂb)r/2|:C2Fl(_ - 2!

/=,
2 2yp i+ 4y

/.2
11\’ Y b—f + 47f~>br)

am(r)=0 atr=L, (20)
therefore implying that,=0. The constant, is determined +eU 1 MW 1
by the normalization 2 2\Vyd + Ay

f d?r[my(r) + my(r)] = N. (21) vV ygﬁf + 4ypbr>} . 27

In the vortex configuration The functions 1F1(1/2—7bﬂf/2\f'm,l,

2 |
@l 1+ =0 = N (22) \"7’2% +4y;_pf)  and U(llz‘)’_bﬂf/Z\J’Ytznﬂf+47fﬂb,1.
Yot 1= VYb_i+4y:_pf) are the two solutions of the confluent hy-
pergeometric Kummer equation. It is useful to define a quan-

which gives tity p given by
C = n_ 1t (23 1
F2m (L) p=5(1-%>- (28)
VY bt 4%

with n the density of motoN/L?2.
The result above holds for purely tangential boundaryNote that
conditions, consistent with the symmetry of the vortex. It
will be modified with respect to the simulation results both 0=p=<0.5, (29
as a consequence of ti€artesian latticization used to dis-
cretize the equations as well as by the fourfold symmetry ofvith y,_¢,¥_,=0. The argument of the exponent in Eq.
the simulation box. Both these factors will lead to a combi-(27) is always negative for ally,_s,y_,=0. The coeffi-
nation of the logarithmic and constant solutions above. cientsc, andc, are determined by boundary and normaliza-
_ o R tion conditions.
B. Single aster solution, i.e., T=+ The boundary condition is that there is no total motor
We again assume radial symmetry for the bound and freeurrent at the boundary, i.e.,
motor densities. We choose=1(r)f, with f(r) such thatC is
divergenceless, i.eY -C=0. We thus obtairf(r)=c,/r, with dmy(r) +my(r)=0 atr=L, (30
Cy a constant. The radial current of free motorg+s,my)f . . . .
while the radial current of bound motors ismy)f. The since t_he radial cuArrent.of bound motors in the astgr cpnflgu—
boundary condition that the total motor current vanishes afation |sJ:—mb(-r)r. This can be _used to determimg in
the boundary implies terms Ofc.l.' We f_|nd that on imposing the no-current bqgnd—
ary condition,c, is very small compared to; and is signifi-
gmg+my=cy/r=0 atr=L. (24)  cant only when the system size is of order the “correlation”
length over which the density decays. We will assuisee
below) that we can set,=0 to yield physically admissible
dmg(r) =—my(r). (25)  solutions.
The constant; can now be fixed by the normalization
condition which requires the total number of motors
(bound+freé¢ be constant,

This ensures thaty=0 and therefore

Equation(9) becomes
2 1
d g+ T Yoo G Mg = y_pme = 0. (26)

L

This is a second order differential equation whose solution is j d?r[my(r) + m(r)]=N. (31
completely specified if the value of the function and of its 0
derivative at the boundary are supplied. Given these bound-
ary conditions, the free motor density can be obtained via Y
numerical solution using the Runge-Kutta method. The — — -
bound motor density is also easily determined via a radial’ Yo—f/2VY bt +4¥i—p,1,Vy 1 +4y1_pf)_term in_com-
derivative of the free motor density. parison  with  the U(1/2-y, ¢/2\y{ 1+4y .1,

We now derive exact and asymptotic expressions for mow’yﬁﬂf+4yfﬁb r) is the following. A power series expan-
tor densities in the aster geometry. The general solution tsion yields

hereN is the total number of motors.
A physical argument for neglecting thgF,(1/2

031905-11
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* () X" can be neglectegsee the Introduction for a discussion of this
F(p.ax) =2 —"—|, (32 point). Thus, while inserting appropriate numbers for the on-
n=0 (@q ! off rates would generate power-law profiles closely resem-

bling those of NSM, at least not too far away from the core,
a direct comparison to these particular experiments may not
be feasible.

Another limit in which an exact answer can be obtained is
Phe following. If there is no interconversion between the two
species of motoré.e., y,_.+=7v;_p=0), the equations of mo-
tion for free motors and bound motors decouple. The num-
bers of free motors and bound motors in the system are then

where(p),=(p+n-21)!/(p—21)! and(p)y=1. This function is
a monotonically (exponentially increasing function offr.
Such a density distribution implies a motor density per unit
area which increases ass made arbitrarily large, a solution
which is clearly untenable on physical grounds. On the othe
hand,U(l/Z—ybqf/Z\e“"yﬁﬂf+4yf_>b, 1 ,\s“"y E*)f+4’)/f_,br) de-
creases monotonically with increasimg Hence we retain

FEnce we 1
oynl;z/—the U(llz__?’bﬂflz\’7t2>~f+47fﬂb'1' conserved independently. The free motor density equation
VYt +4yi-pf) part of the solution fomy(r). supports solutions of the formm(r)=c,+c, In(r), wherec,

To derive the asymptotics we begin with the integral rep-ang c, are constants of integration. Imposing a vanishing
resentation current of free motors at the boundary constraisrs0. The

1 (= other constant; can be fixed from the condition that the
U(p,q,x) = F—f e*tP (1 +t)9 P dt. (33)  total number of free motors is constant. The bound motor
(P)Jo density then has the simple power law behawg(r) ~ 1/r.

We relabel  (\y2 +4y_pr=z and (1 _ _ o
_'ybaf/\/“”yg_,f+4’)’f4>b)=p for notational convenience. We C. Comparison of the analytic results with simulations
then obtain These analytic results can now be compared to the results
© g1 of direct simulations of the dynamical equations for single
1 e P N
Up,1,2=—— t. (34) aster and vortex structures. We chodser in the full equa-
F(p)Jo (1+1)P tions of motion for the motor densities given in E¢$) and

(5) to represent the aster. We then evolve these equations in
time until the steady state is reached. We compare the motor
1 1 eugr? profiles obtained in such simulations to profiles obtained
Tp)?f mdu- (35  from solving the ordinary differential equation at steady state
0 [EqQ. (26)] by a fourth order Runge-Kutta method. Free and

Sincep is a small number between 0 and 0.5 we may expan@ound motor densities at the boundary of the system are
the denominator binomially. The first term giv€$p) and  obtained by solving the full time-dependent equatiffgs.

subsequent terms converge. Hence, in the largmit, the (4) and(5)]. These are used as boundary value input to the
integral is justl(p). Therefore, Runge-Kutta procedure to facilitate direct comparison be-

tween simulation and analytic results.
Using the symmetry of the scaled equations Edsand
l(ygﬁf + 4y )PPr P’ (5) discussed in Sec. I, we normalize the densities obtained
by these two methods to the same constant value before
e 'lé p 1 comparing them. Figure 7 shows a plot of the distribution of
my(r) =c¢1— pi2 p<— + —>, bound motors in a single aster obtained frémthe direct
(Yoot 4y AT € simulation, (i) the Runge-Kutta method, ar(di) the exact
where the inverse of the “correlation” length is defined as solution outlined in the previous section. The parameter val-

We now change variables to=zt. The integral is then

e—r/.f

me(r)=c

———— ues areyi_p=mM_i=0.5 andm=0.5. Figure 8 shows the
£z (Yot = V(¥boi + 4¥1p) _ | Pt (36) comparison between simulations, the Runge-Kutta method,
2 2p-1|" and the exact solution for the free motor density profiles.

While the data are noisy, particularly for the bound motor

The correlation lengti and the power-law exponegpt de- .. densities, the agreement with the theoretically predicted re-
pend ony;_, and y,_.;. We see that the bound motor density sult is satisfying

in the aster case has an exponential fall modulated by a Figure 9 shows the distribution of bound motors in a vor-
power-law tail instead of the pure exponential falloff pre- tex configuration obtained by fixing = @ in the full equa-

dicted in the LK model. . : S . )
These results can, in principle, be compared directly totlons of motion for the motor densities given in E¢$) and

the experiments of NSM in Refl5], but for one difficulty. ). The plot O.f ”?b(” vs 1 illustrates thg SI(.)W’ essentiallly
Out of the aster configurations generated in the experimenégg.a”thm'C vgrlatlon (_)f the motor Qen3|t|es in such c_onﬁgu—
in steady state, NSM specificalelectthose configurations rations, con5|stent with the analytic approach of this paper
in which the aster densities decay most closely asdwvay and of earlier work.

from the aster core. This then enables a direct fit to their
theoretical predictions. In contrast, the theoretical predictions
here are in the limit where the microtubule density profile is  So far, in our analysis, we have ignored the effects of
constant, so that fluctuations in the density of microtubulénteractions between bound motors. These motors, in their

D. Saturation effects and the stabilization of asters

031905-12
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< Simulations o Simulations
5.3 — 2log(r)

—— Runge—Kuitta solution
------------ Exact solution
0.8 '

m,(r)
m,(r)

9 ETH 0 : :

r

FIG. 7. Density profiles for bound motor densitigsiotted in . ) . .
dimensionless unijs The profiles are shown for an aster in the di FlG'_ 9_I Densn_): pr_?EIes fofr_lbound mr:)tor d;ensmes ;:Iott(_ed tlrr:
regimeys_s=y6..1=0.5, withS=0. The density is chosen to be 0.5. imensionless units. The profiles are shown for a vortex in the

The x axis denotes the separation from the center of the aster i ehglmeyffl:j: Ybe:?HB andS:Ot._ Th? dentshlty IS Cthose}ntr:o be ?5
units of the lattice spacing. ex axis denotes the separation from the center of the vortex in
units of the lattice spacing.

physical setting, have a finite size and move on a one-

dimensional track, the microtubule. It is thus reasonable tQlence of the motor current on the density_ This can be incor-

expect that interactions between bound motors should bgsorated in our calculation by choosing a motor current of the
come increasingly important at large motor densities. Onggrm

can account for these interactions by simply requiring that

more than one motor cannot occupy the same volume in I, =AM, F(my) T (37)
space at the same time. Such “excluded volume” interactio . . o

have been used in earlier models for collective effects ir:j“he functionf(m,) should, in principle, be calculated from

molecular motor transpof27] an underlying microscopic model. We will circumvent this
At the simplest level, accounting for such interactions.necess!ty by simply assuming a co'nvemen.t form purgly for
leads to a nonlinealin general, also nonmonotonidepen- illustrative purposes which i&) consistent with the require-

ment thatA (the velocity is density independent for small

m, densities andb) saturates for largen,. One such choice
< Simulations is
—— Runge—Kuitta solution

0.8 Exact solution f(my) =1 — tanimy/mgyy) . (39

The valuemg,, limits the current of bound motors. When
Mg =>m, then f(my,) — 1 and we recover results discussed

1 T

0.6 {1 earlier. Whemmg,,<my, the current reduces d¢m,) — 0. In
= the aster cas€l =—t), Eq. (25) becomes
: 04| | dr My(r) = = my(r)f(mp). (39
Therefore, the free motors obey
1
0.2 ey + (F - ?’bq”(”b))armf — oM =0. (40

This equation can now be solved as a boundary value prob-
SV lem using the methods described earlier.
Figure 10 shows bound motor densitieg(r) as a func-
tion of r for different values ofmg,. We have normalized
FIG. 8. Density profiles for free motor densities plotted in di- €ach of the plots to the same value at the origin. We choose
mensionless units. The profiles are shown for an aster in the regim@sa=0.001, 0.1, 1, and 1000. An increased,,; implies
Yi—b=Y_¢=0.5 andS=0. The density is chosen to be 0.5. The smaller saturation effects. The plots shown in Fig. 10 are
axis denotes the separation from the center of the aster in units ¢formalized to unity at=1. Observe that reducings, leads
the lattice spacing. to far smoother variations of the bound motor density. Data
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FIG. 11. A plot of the difference in energi€s dimensionless
FIG. 10. Effect of saturation on the motor density profile in form) of a single vortex and a single aster versus the systenisize
asters. As the effect of saturation is increased, the profile ishe parameter values ame=1, e=1, andS=0. They axis (System
smoother. The curves are labeled from left to right assize in dimensionless unijtss plotted on a logarithmic scale. The
Msa=1000,1.0,0.1,0.0001. The axis denotes the separation from point at which the energy of the vortex becomes lower than the
the center of the aster in units of the lattice spacing;ytrexis is  energy of the aster shows up as the minimum in this curve. In the
plotted in dimensionless units. Lee-Kardar model the length scale at which the vortex becomes
lower in energy is about four times smaller than in our model, for

for the associated free motor densities are similar and are n#is choice of parameter values.
shown here.

It is tempting to directly link such saturation effects with
the experimental observation of bundles of microtubules afkardar model. We work at the same value of total motor
large motor densities. Physically, while alignment would bedensitymin each case, setting=1. Since the magnitude of
favored at large motor densities, saturation should set limits€Nergy” scales in the two models differs, the behavior of the
on such alignment, perhaps favoring instead the locallygnergy difference is most clearly seen using a logarithmic
aligned “bundles” seen at large. Unfortunately, we have scale for they axis. The point at which the vortex energy is
been unable to stabilize solutions of the full set of equationgeduced below the aster energy appears as the minimum in
governing pattern formation incorporating saturation effecthe curve. From the position of this minimum, we see that

and so are unable to test this interesting possibility directlythe crossover length scale above which asters are unstable
with respect to vortices is smaller in the Lee-Kardar model as

compared to our model.

The fact that this crossover length scale lies between 50
and 100 in our units for length rationalizes our observation
Lee and Kardar rationalize the stability of vorticed S  that the stable asters we obtain flor50 are replaced by

=0) compared to asters in the following way. éE1, the stable vortices fol.=100. These results support, and add
right-hand-side of the tubule equation derived by LK can befurther credence to, the Lee-Kardar argument, at least in the
interpreted as the functional derivative of a “free energy.”S=0 case. With finiteS, of course, vortices are disfavored
The motor density profile plays the role of a spatially modu-altogether and generating stable aster structures is no longer
lated stiffness. This enables the calculation of the relativean issue.
“free energies” of aster and vortex states. Smoother motor We now provide a qualitative explanation of three basic
density profiles lead to lower “free energies.” The reducedeatures of motor and microtubule arrangements at zero and
energy of the vortex configuration, in which motor density nonzeraS. These aréi) the absence of vortices at nonz&,o
profiles decay logarithmically, implies its increased stability (i) the presence of a small number of large asters at sgnall
as compared to asters, for which motor density profiles decays (iii ) the presence of a large number of small asters which
exponentially away from the core. increases aS for largerS. Our approach is approximate and
We adapt the Lee-Kardar argument to our model, usingjualitative, based on “free energy” type arguments, analo-
our analytic results for bound motor density profiles in astergjous to those of Lee and Kardar.
and vortices. In Fig. 11, we show timeodulusof the differ- Consider the limit in whiche=1 and theVm term is ob-
ence in energy of a single vortex and a single aster as &ined through a functional differentiation of the “free-
function of the system size for our model and for the Lee-energy” term

V. RELATIVE STABILITY OF ASTERS
AND VORTICES
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S \2 with system size, a far weaker function than the quadratic
ES=J dzx(aV 'T+;mb) : (41)  dependence o of the aster. This implies that for suffi-
ciently largeL the energy of the isolated vortex falls below
A functional derivative ofF with respect to thd field gen-  that of a single aster, in systems of sufficiently large sizes, as
erates the term&?V(V-T) and SVm,. In the limit thata  first suggested by Lee and Kardar.
—0, we obtain th&vm, term of our equation of motior{\We How are these arguments modified at finB2 Since
prefer to work with a nonvanishing, although infinitesimal, simulations indicate that the state obtained at finite pos8ive
value of o and to consider the effects of varyi®yto avoid is a “lattice of asters” with the scale of the aster decreasing as
the singular behavior that arises in the0 limit.) Our in-  Sis increased, we will compare the energies of single vortex
troduction of the term irS was, in fact, motivated by the configurations with energies for an assembly of asters
observation that motors moving along two initially parallel (“miniasters’) of typical sizeo. We imagine that thé. X L
microtubule configurations, act to bring them together, favorsystem is subdivided into-X o units and place an aster in
ing a nonzero divergence. This physics, although incorpoeach one of these subunits. For a system of linearlsitee
rated in the simulations of Nédélét al., is ignored in the number density of such astersds For inward pointing as-

LK model. ters, as obtained in our calculation, the divergeicd =
The full “free energy” for theT field is —1/r. Consider first the term
2
2 1 2 1 4 1 2 2 S
E=| dx —§a|T| +A—1’8|T| +§mb(r)(VT) Es~ | dX| aV -T+-—myr)| . (45)
o

. —(aV 1.5 )2] (42) Now _miniasters(i)_ are assumed small atfid) o_bey boundary_
2 a 2| conditions that differ from the case of the single system-size
spanning aster. Bound motor profiles are then, in general,
We fix the modulus ofT, thereby eliminating the first two combinations of the two solutions obtained earlier rather
terms, and concentrate on the relative energetics of statg@gan the single one which yielded the exponentially damped
governed by the last two terms of the equation. form used in our earlier analysis. Also, the close proximity of
For the Lee-Kardar model, wit§=0, the stability of vor-  the many miniasters formed indicates a slower than exponen-
tices over asters can be understood from simple comparisomig| variation of the bound motor densities about each one.
of the relative energies of vortices and asters. First considgret yusassumehat motor densities in such miniasters adjust
the case of a single aster. We choose a simplified profile fof order that the following motor density profile is obtained:

bound motors, assuming my(r) ~ &?/Sr(r <o) andmy(r) ~0(r > o). This ensures that
the contribution of the term above is canceled. Note that the
A r<¢ . oL
my, = (43) bulk of the contribution to the energy of a miniaster comes
0, r>¢& from the regiorr < &; the contributions from larger regions is

negligible providedé~ o.
We first calculate the enerdy;m of @ single such mini-
aster configuration. This is obtained from the integral

This represents, although approximately, the fact that micro
tubule densities are significant only over distances of ofder
from the core of the aster. The factéris a normalization
factor which ensures a fixed number of motbré a system L Al 1 &

of typical sizeL. We will work with a fixed overall density of Eima= f d’rmy,(r)(VT)? ~ S f drp ~sa (46)
motors~N/L? and examine the limit in which — . a a

In the S=0 limit, the energyE, of the aster is dictated by The number of motors in a single miniaster is obtained from

L T 2
ES ~ J d?r my(N(VT)2~ A In(é/a), (44) Nyp ~ f m(r)d2r~%’. (47)

a a

where we cut the integral off at a lower lingitcorresponding ~ The total energyE; , of the system of miniasters is then
to a microscopic coarse-graining scale and have used the fact 2

that (VT)?=1/r? for both asters and vortices. We now fix El\~ — L2 (48)
by normalization: sincgm(r)d’r =N=nL?~ A¢?, we obtain Sa

E 2~ nL? In(&/a)/ €. (Accounting for a more complex decay The constrainh= &Ny yields

of the bound motor density does not change this result quali-

tatively) Thus, for a system of sizé (L>¢), imposing a b~ i (49)
fixed densityof motor yields a quadratic increase of the en- o

ergy with system sizé.

We now repeat the same argument with a single vorte
Here, the relatively slower variatiom,(r) ~C;+C, In(r/\)
yields E8~f;[mb(r)/r 2lrdr~In(L/a), up to further loga-
rithmic corrections. The prefactor is therdependenof sys- o= (50)
tem size, leading to an overall logarithmic increase of energy A ga

illustrating how the number of asters increasesSas in-
*creased. The total energy corresponding to a fixed areal den-
sity of motorsn is then easily derived as
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We now compare this with the energy of a single vortex atmicrotubules. We have suggested elsewli&g that it may
nonzeroS, computed assuming that the motor density pro-be useful to think of spindle formation itself as a pattern
files are the same as in the case in whHilvas zero. This is formation problem which can be modeled using continuum
obtained a€E, ~ $n?L?/ o2, yielding the ratio hydrodynamical equations in a small number of variables.
One intriguing possibility is that the bipolar aster conforma-
B iaa (51)  tion of microtubules seen in the spindle is associated with
ELA a® parameters in our model in which the formation of a small

We mav also compare the enerav of an assembly of rninipumber of large asters is favored. It is tempting to think of
Y P =nergy y ot changes in the structure of the spindle as mitosis proceeds as
asters with the energy of a single aster. Arguments similar t

feflecting the dynamics of derlying f ters i

. 2 o 27 .3 g the dynamics of an underlying few parameters in
those above yieldt, ~n°S'L%/ %, and thus simplified models such as this. Further work relating to this
Ex nSoa program is in progress.
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ler scheme,

me(t+ At) = me(t) = AtV - I(mg) = v _pMs + Yot My,
(A1)

VI. CONCLUSIONS

This paper presents a hydrodynamic theory of pattern for-
mation in motor-microtubule mixtures, studying both the ef-where
fects of confinement as well as pattern formation in uncon-
fined geometries. We show that the influence of the
boundaries on pattern formation can be considerable, by il- . . .
lustrating how either asters or vortices can be formed de- Jy(my(i,j)) =[me(i,j + 1) —m(i,j - 1J/25.  (A3)

pending on how the orientation of microtubules is fixed atthe grid spacing is’x=dy=5=1 and the time stept=0.1.

the boundary. We have explored the parameter space 9 the boundaries, we impose the boundary condition that no
€, m, andSsystematically, describing the variety of configu- cyrrent(either of free or bound motorslows into or out of
rations obtained. We obtain density distributions of free andne system. This condition is easily imposed by setting the
bound motors corresponding to the final microtubule congppropriate current to zero.

figurations. Such plots may be compared directly to experi- A related discretization is used for the bound motor den-
ments. We have compared analytic predictions for motokity equation

density profiles in isolated vortices and asters with simula-

tion data. We have also presented results for pattern forma- My ==V - (MpT) + y_pMg = Yp_t M, (A4)

tion in much .Ia.rger systems, in which the effects of bound'where, in the bulk, partial derivative terms are discretized as
aries were minimal.

One technical improvement would be to account for g,(m,T) =[my(i + 1,j) T, (i + 1,j) —my(i — 1,j) T, (i — 1,))1/25
variations in the locatlensityof microtubule, as opposed to (A5)
only their orientation. We could then account for the density
dependence of quantities such @s.,. More information  with a similar equation used for thecomponent.
from experiments, performed in confined geometries using TheT equation is differenced through the alternate direc-
motors with a range of different processivities would also betion implicit operator splitting method in the Crank-
useful in clarifying some of the issues which relate to theNicholson scheme. At the first half time step
simulations described here. It would also be interesting to n+1/2 N
search for the novel configurations we obtain here in differ- ((Z=L)T =0T+ LTy, (AB)

ent regimes of parameter space, such as the “flag,” the digyhere r=252/6t and 7 is the identity matrix. The super-

torted vortex and the “outward aster.” , scripts onT, indicate the time step at which these quantities
~ As we have emphasized, the set of hydrodynamic equasre caculated. The operatofs and L, are given by
tions we motivate and use allow for a minimal yet complete

description of the patterns formed in mixtures of motors and Ly=myd 2+ (3mp)dy + S(dmy), (A7)

(i) =[m(i + 1,j) —me(i = 1,))/25,  (A2)
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L,=2C(1-T?) +my 3 + (3ymp)dy + S(aymy).  (A8)
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We work with two different types of boundary conditions on
theT field. In the first, which we refer to as reflecting bound-

The first and second derivatives evaluated for a function,y conditions, the microtubule configuration at the boundary

f(i,j) on a lattice poin{i,j) in the bulk are

o fG,))=[f(i+1,))-f(i-1),j)/25, (A9)
9 F A1) =[f( +1,)) = 2f(i,j) + (i - 1,)) /82,

(A10)

with similar equations for thg derivatives.

At the second half time step,
(- L)TF=(rT+L)T T2, (A11)
where

Ly =myd 2+ (amp) dy + S(amp) , (A12)
Ly=Myd §+ (dyMy)dy + S(aymy). (A13)

sites is fixed to point along the inward normal. In the second,
which we refer to as parallel boundary conditions, microtu-
bule orientations at the boundary are taken to be tangential to
the boundary. In both these sets of boundary conditions, the
state of the boundary vectors is fixed and does not evolve.
The total number of motors, initially divided equally be-
tween free and bound states and distributed randomly among
the sites, is explicitly conserved.

We add weak noise, primarily in thE equation of mo-
tion, to ensure that true steady states are reached in our simu-
lations. This noise is drawn from a Gaussian distribution
with zero meang-function correlated in time, and thus with
a strength specified solely by its variance. Such noise simu-
lates thermal and nonequilibrium fluctuations, such as arise
from the stochastic process of ATP hydrolysis by motors.

A similar scheme is used for differencing the equation forLarge noise strengths wipe out patterns, yielding homoge-

the T, component. Our simulations are on lattices of severaneous states. We have also experimented with a variety of
sizes, ranging fronh. =30 toL=200. We vary the motor den- initial states to ensure that the qualitative features of the pat-
sity in the range 0.01 to 5 in appropriate dimensionless unitgerns we obtain as stable steady states are, indeed, robust.
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