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We model the stable self-organized patterns obtained in the nonequilibrium steady states of mixtures of
molecular motors and microtubules. In experiments[Nédélecet al., Nature(London) 389, 305(1997); Surrey
et al., Science292, 1167(2001)] performed in a quasi-two-dimensional geometry, microtubules are oriented
by complexes of motor proteins. This interaction yields a variety of patterns, including arrangements of asters,
vortices, and disordered configurations. We model this system via a two-dimensional vector field describing the
local coarse-grained microtubule orientation and two scalar density fields associated to molecular motors.
These scalar fields describe motors which either attach to and move along microtubules or diffuse freely within
the solvent. Transitions between single aster, spiral, and vortex states are obtained as a consequence of
confinement, as parameters in our model are varied. For systems in which the effects of confinement can be
neglected, we present a map of nonequilibrium steady states, which includes arrangements of asters and
vortices separately as well as aster-vortex mixtures and fully disordered states. We calculate the steady state
distribution of bound and free motors in aster and vortex configurations of microtubules and compare these to
our simulation results, providing qualitative arguments for the stability of different patterns in various regimes
of parameter space. We study the role of crowding or “saturation” effects on the density profiles of motors in
asters, discussing the role of such effects in stabilizing single asters. We also comment on the implications of
our results for experiments.
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I. INTRODUCTION

The mitotic spindle in a dividing eukaryotic cell is com-
prised of several millions of interacting protein molecules
[1]. Remarkably, these molecular constituents self-organize
to yield patterns at the scale of micrometers. The existence of
such self-organized nonequilibrium structures at the subcel-
lular scale is a common feature of biological systems. Such
structures include the endoplasmic reticulum and the Golgi
complex, membrane-bound organelles which participate in
intracellular trafficking. They also include the cytoskeleton, a
cell-spanning network of polymers such as actin filaments,
intermediate filaments, and microtubules[1].

An individual microtubule is a polar object: microtubule
ends, labeled as − and +, grow and shrink at different rates
[2]. This polarity dictates the direction of motion of a class of
molecular motor proteins on microtubules. Motor proteins
such as kinesins use energy derived from adenosine triphos-
phate (ATP) hydrolysis to exert forces and to translocate
along microtubules[3]. The directed motion of individual
molecular motor proteins is thus a nonequilibrium phenom-
enon.

Experiments on centrosome-free fragments of the cytosol
containing both motors and microtubules obtain self-

organized radial structures called asters[4]. Single asters, in
addition to other complex patterns such as vortices, disor-
dered aster-vortex mixtures, and lattices of asters and vorti-
ces, are also seenin vitro, in experiments on mixtures of
molecular motors and microtubules[5]. Features of mitotic
spindle formation are reproduced in mixtures of motors, mi-
crotubules, and gold beads coated with DNA[6]. The fact
that such experiments are able to mimic the complex self-
organized states seen in living cells indicates that simple me-
soscale models which work with fewer components may be
useful in capturing some aspects of cellular pattern formation
[7]. In this context, Nédélec and collaborators have studied
pattern formation in mixtures of complexes of conventional
kinesins with microtubules in a confined quasi-two-
dimensional geometry[5]. The later experiments of Surreyet
al. investigate pattern formation in larger systems where the
effects of boundaries appear negligible[8]. The experiments
are supplemented by simulations which reproduce many fea-
tures of the experiments[5,8–11]. The theoretical work de-
scribed in this paper addresses the modeling of these experi-
ments.

This paper presents a theory of pattern formation in mix-
tures of molecular motors and microtubules in a confined
geometry. We motivate and numerically solve hydrodynamic
equations of motion for a coarse-grained field representing
the local orientation of microtubules as well as for local mo-
tor density fields[12]. In our theoretical description, as well
as in the experiments, microtubules are oriented by com-
plexes of bound motors, yielding patterns at large scales
[13].
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Our approach is closest in spirit to that of Lee and Kardar
(LK ) [14]. The LK model is a hydrodynamic description of
two coupled fields. One of these is a two-dimensional vector
field describing the coarse-grained orientation of the micro-
tubule. The other is a conserved scalar field representing the
local motor density. The LK model captures two prominent
features of the experiments of Nédélecet al.: the presence of
stable vortices formed by microtubules and the instability of
an aster formed in the early stages of pattern formation to a
single, stable vortex at large motor densities.

However, despite this success of the LK model, several
features of the experiments are incompletely understood. The
transition between a single aster and a single vortex seen in
the experiments appears to be driven primarily by confine-
ment effects in small systems. In the LK model, confinement
does not appear to play a vital role, and the single aster to
single vortex transformation is a generic feature even for
large system sizes, at large motor densities. Experiments ob-
tain a variety of stable steady states on large systems as a
function of motor density. These include a “lattice of asters”
state in which asters are the only stable structures, a “lattice
of vortices” state, in which individual vortices are stable
while asters are absent, as well as an intermediate “aster-
vortex mixture” state. The LK approach predicts that a single
vortex should be the stable state at large motor densities even
for very large systems. Experiments, however, always see a
“lattice of asters” in this regime.

The LK model predicts that motor density profiles in as-
ters are always simple decaying exponentials, independent of
the rates at which motors hop on and off the filament. How-
ever, experiments and theoretical work suggest more com-
plex decays. Such decays include the intriguing possibility of
power laws with exponents which vary continuously as a
function of the on-off hopping rates. Nédélec, Surrey, and
Maggs(NSM) derive equations for motor profiles around a
single preformed aster, showing analytically that such pro-
files are pure power law in nature[15]. The NSM equations
describe asingle aster configuration composed of a fixed
number of inward(or outward) pointing microtubules. As a
consequence, the density of microtubuledecreasesradially
outward from the aster core.

The NSM equations describe motors as either freely dif-
fusing in the solvent or bound to and moving along a micro-
tubule. These states are allowed to interconvert. Since the
free motors become bound only in the presence of a micro-
tubule, the conversion rate should be proportional to the lo-
cal microtubule density. This yields a nontrivial space depen-
dence for this conversion rate, which is responsible for a
power-law decay of motor densities predicted by NSM.
However, NSM do not address issues of pattern formation. In
the NSM model the densities of bound and free motors are
governed by separate equations. LK, in contrast, use a single
equation for the full motor density field which is effectively
the “sum” of these equations, but ignore the dynamics of the
difference field.

We suggest here, in contrast to NSM, that at the length
scales appropriate to a coarse-grained hydrodynamic descrip-
tion of pattern formation and at the densities of microtubules
in the experiments, it is appropriate to ignore fluctuations in
the local density of microtubule. The relevant fluctuating

field is then theorientationfield for the microtubule at fixed
density, as in the LK model[16,17].

Detailed information regarding the ordering of microtu-
bules in the presence of molecular motors has come from the
extensive simulations of Nédélec and collaborators[5,8–10].
These simulations, performed in a two-dimensional geom-
etry, obtain asters and vortices, in addition to relatively dis-
ordered configurations in which both asters and vortices are
present. However, the best simulations require as many as 19
parameters to be specified; these include fluid viscosities,
motor diffusion constants, binding strengths, and microtu-
bule bending rigidities. The uncertainties in these parameters
are fairly large, often of an order of magnitude or more; it is
unclear which of them are crucial to pattern formation and
which others play a secondary role. In contrast, the hydrody-
namic approach of this paper uses far fewer parameters, thus
enabling efficient scans of parameter space[18–21].

We summarize our results here. In a regime of parameter
space for our model which is closest to that for the LK
model, we obtain a single vortex as a stable final state for
large motor densities. Our results here coincide with the LK
results. However, in other regimes, asters are favored. A “lat-
tice of asters” state is stabililized in our model through a
low-order relevant term in the equation of motion for the
microtubule orientation. On small systems, constraints due to
confinement favor a small number of asters, whose number
can be increased systematically as parameters are varied.

We calculate the distribution of free and bound motors in
asters and vortices obtained in our model. Our results for
motor profiles about asters differs from both the LK result
and the NSM one. We derive an exponential decay of bound
motor densities away from aster cores, modulated by a
power law in which the exponent of the power law depends
in a nonuniversal way on dynamical parameters. The associ-
ated decay length for the exponential can become very large
in some regimes of parameter space, yielding what would
appear to be pure power-law decays close to the aster core.
For vortices, we obtain results equivalent to the LK results.

We obtain, numerically, the solutions to our equations
when “crowding” effects due to the interactions of motors
moving on microtubules are accounted for in a simple way.
Such effects distribute the motor density more uniformly
along the microtubules. We argue that the inclusion of such
“crowding effects” should further act to favor asters over
vortices in finite systems. We adduce simulational evidence
for spiral structures favored by confinement and point out
that the microtubule configurations seen in experiments do
resemble spirals in many cases.

We discuss in some detail the nature of pattern formation
in systems where the effects of boundaries can be neglected.
Our model generates all the patterns seen in experiments,
such as the aster-vortex mixture, the “lattice of asters,” and
the “lattice of vortices”[22]. We show how these states are
linked in the nonequilibrium “phase diagram” of Fig. 1, dem-
onstrating how smooth trajectories in parameter space can
connect the states observed, in agreeement with the experi-
ments[23]. Figure 1 is relevant to experimental data in that it
shows how a relatively small number of parameters may suf-
fice to fix the macroscopic state of the system.

The outline of this paper is the following. In Sec. II, we
describe the details of our model. Section III presents results
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from our numerical simulation of the equations of motion for
different boundary conditions.(Our simulation techniques
are described in an appendix.) We present results for systems
in which the effects of confinement are important as well as
for large systems, where confinement is irrelevant and the
boundary conditions may be changed without affecting the
patterns which form in the bulk. In Sec. IV, we present ana-
lytic and numerical results for the profile of motor densities
in single vortex and aster configurations. Section IV also
discusses how saturation effects resulting from the interac-
tions of bound motors affects motor density profiles. Section
V combines the results of Secs. III and IV in a discussion of
the relative stability of aster and vortex configurations. We
provide a simple argument for the stability of different pat-
terns as parameters in our model are changed. The conclud-
ing section, Sec. VI, summarizes the results of this study and
outlines possibilities for further work.

II. MODEL

Our model treats motors attached to microtubules differ-
ently from motors which diffuse freely in solution. Motors
which move on microtubules are referred to as “bound” mo-
tors, while those which diffuse in the ambient solvent are
referred to as “free” motors. These are described by coarse-
grained fields denoted bymb andmf, respectively, and obey
different equations of motion. In the absence of interconver-
sion terms changing a bound motor to a free motor,mb obeys
a continuity equation involving the current of motors trans-

ported along the microtubules. The free motor fieldmf obeys
a diffusion equation with a diffusion constantD. These two
fields are coupled through mechanisms which convert “free”
motors to “bound” motors, and vice versa. The equations
they obey have the form

]tmf = D¹2mf − g f→b8 mf + gb→f8 mb, s1d

]tmb = − A = · smbTd + g f→b8 mf − gb→f8 mb. s2d

gb→f8 and g f→b8 are the rates at which free motors become
bound motors(“on” rate) and vice versa(“off” rate). These
rates have dimensions of inverse time. Note that thetotal
motor density fieldm=mbsrd+mfsrd is a conserved field.

The termA= ·smbTd describes the motion of bound mo-
tors along microtubules with velocityA. While the rateg f→b8
should depend on the local density of microtubules, we will
assume that microtubule density fluctuations are suppressed
at the scales relevant to a hydrodynamic description and re-
tain only the orientational degree of freedom of the local
microtubule field. We work in two dimensions throughout,
since the experiments were performed in a quasi-two-
dimensional geometry[13].

The dynamics of the microtubules, given by the equation
below, incorporates the terms used by Lee and Kardar in
specific limits. It also includes one additional term. As in the
LK model, we ignore fluctuations in the density of microtu-
bules, concentrating on their orientational degrees of free-
dom. The hydrodynamic equation includes terms which re-
flect the dynamics of individual microtubules. We take these
to be stabilized at unit length. It also includes motor-
independent and motor-dependent orientation terms. In prin-
ciple, for a nonequilibrium problem, all symmetry allowed
terms must figure here. Of these terms, we will incorporate
only the lowest-order symmetry allowed terms whose contri-
butions can be justified transparently on physical grounds.

Our equation then reads

]tT = Tsa − bT 2d + gmb¹
2T + g8 = mb · = T + k8¹2T

+ S8 ¹ mb. s3d

The first termTsa−bT 2d governs the stabilization of the
microtubules at a preferred length ofa /b, which we will
normalize to unity. The second and third termsgmb¹

2T
+g8=mb·=T are alignment terms, reflecting the alignment
of microtubules due to the action of bound motors. The third
term is also interpretable as a “convective” term, in which
the local velocity which convects fluctuations in theT field
is proportional to the gradient of bound motor density.

The fourth termk8¹2T describes an intrinsic stiffness
against distortions, allowing tubules to form an ordered
phase in the absence of thermal noise, even at zero motor
density. Such a term should always be present in thermal
equilibrium, although the experiments indicate that its effects
are small at the temperatures at which the experiments are
done. The last term is a symmetry allowed term of linear
order in the fields. Physically, such a term derives from the
tendency of motors to bring initially parallel-oriented micro-
tubules together, creating a nonzero divergence in the local
tubule configuration. This term can be derived from a “free

FIG. 1. Qualitative map of steady states, illustrating how differ-
ent states, the disordered state, the aster-vortex mixture state, the
lattice of vortices state, the single vortex, the lattice of asters, domi-
nate in different regimes of parameter space; for a definition of
parameters see text. The parametere is plotted on they axis, with
the total motor densitym plotted on thex axis. The parameterS
extends out of thee-m plane. Of the states shown, the lattice of
asters is obtained generically for nonzeroS (out of the plane of the
figure), whereas the other states are associated with theS=0 plane,
although they appear to survive providedS is small enough.
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energy” term(see Sec. V for a more detailed discussion of
this energetics) which favors a net divergence in the tubule
configuration. Such physics is a feature of the simulations
but is not directly incorporated in the LK model. Note that a
few terms allowed by symmetry have been intentionally ex-
cluded. These include the termmb¹ s¹ ·Td; such a term has
an effect equivalent to the¹mb term of the equation above
which is lower order in gradients.

In the LK model the coefficientsg andg8 are taken to be
equal. Thus, the second and third terms can be interpreted in
terms of the functional derivative of a “free energy” term. In
general, however, away from thermal equilibrium, these two
coefficients differ and we may explore the regimes of param-
eter space in which their relative strengths vary. For conve-
nience we chooseg8=eg and vary the parametere to tune
the ratio of these two terms.

The following transformation simplifies the equations
considerably: scale length in units ofD /AÎb /a, time in units
of bD / saA2d, motor density in units ofD /g, and tubule den-
sity in units ofÎa /b. The equations then reduce to

]tmf = ¹2mf − g f→bmf + gb→f mb, s4d

]tmb = − = · smbTd + g f→bmf − gb→f mb, s5d

]tT = CTs1 − T 2d + mb¹
2T + e = mb · = T + k=2T + S¹ mb.

s6d

The parameterC given by bD /A2 is the growth constant.
g f→b and gb→f are scaled in units of inverse time.k8 is
appropriately scaled tok=k8 /D andS=S8sbDd / sagAd. Note
that the scaled equations for the free and bound motors[Eqs.
(4) and (5)] are invariant when the motor densities are mul-
tiplied by a constant. We will use this invariance in Sec. IV C
to compare analytic results for motor density profiles with
results from numerical simulations.

We relate our scaled parameters to typical experimental
values in the following way. The tubule density, scaled in
terms ofÎa /b, is chosen to be unity. The diffusion constant
D is about 20mm2/s andA,1 mm/s, defining basic units of
length and time as 20mm and 20 s, respectively. A tubule
density of 1 implies that over a coarse-graining length of
400 mm2, there are around 400 microtubules, a value close to
that used in the simulations[8]. Our choice forg f→b and
gb→f corresponds to physical rates of 0.005 s−1 to 0.05 s−1,
slightly smaller than those in the simulations[10]; using
larger rates does not affect our conclusions here.

III. RESULTS AND DISCUSSION: NUMERICAL

A. Confined systems

This section presents the results of our simulations in dif-
ferent regimes of parameter space for the boundary condi-
tions discussed above. The simulations discussed here are on
systems of sizeL=30, corresponding to physical length
scales of about 60mm. Our results on somewhat larger sys-
tems sL=50d are intermediate in character between the re-
sults forL=30 presented here and our results on systems of

much larger sizessLù100d, where boundary effects are neg-
ligible.

The configurations of most relevance to our discussion are
asters, vortices, and configurations intermediate between the
two, referred to here as spirals. An aster configuration is the
unit vector field described asT =−r̂, describing a radial con-
figuration of inward pointing unit vectors. A vortex, on the

other hand, is descibed byT = û. A spiral configuration is

described by the unit vector fieldT =Tr r̂ +Tuû in which Tr
andTu take the forms

Tr = − cossad, Tu = sinsad, s7d

wherea is a constant. This contains both asters and vortices
in appropriate limits: In the limita=0, this equation de-
scribes an aster, while in the limita=p /2, the configuration
is a vortex. Thus asters and vortices are particular limiting
cases of more general spiral states.

We work at a fixed large motor density ofm=mb+mf
=0.5. We work at fixed values ofgb→f =g f→b=0.5 here but
have checked that making the motors more or less processive
does not alter our results qualitatively. For motors with very
small “on” and “off” rates, we see disordered states best
described as aster-vortex mixtures. The patterns obtained
here emerge at still higher motor densities for low values of
the processivity. We work with a small value ofk (k=0.05
here), such that the magnitude of the self-alignment term
k¹2T is small compared tomb¹

2T.

1. Reflecting boundary conditions

Our results for reflecting boundary conditions are shown
in Figs. 2(a)–2(d). Each column represents a different value
of S, i.e., (a) S=0, (b) S=0.05,(c) S=0.5, and(d) S=2. We
vary the parametere in these scans, withe taking the values
e=0.0, 0.5, 1.0, and 5 as shown.

In Figs. 2(a)–2(d), the effects of varyinge with reflecting
boundary conditions are the following. In Fig. 2(a), S=0 and
the steady state configuration ate=0 is an aster with tubules
directed radially inward toward the core. Whene is increased
to 0.5, the configuration resembles a “spiral.” Ase is in-
creased further the spiral distorts into a vortex. In Fig. 2(b),
we show configurations at small but nonzeroS, S=0.05. The
single aster is stable fore=0 and 0.5, but yields to a single
vortex for largere. A general observation is that the core of
the vortex is increasingly distorted ase is increased further.

Figure 2(c) shows steady state configurations atS=0.5. A
tendency toward the formation of a lattice of asters is appar-
ent, ase is increased at these values ofS. This is consistent
with our earlier results on large systems, where we observed
that nonzeroSalways promoted the lattice of asters. At large
e, e.g.,e=5, there is a pronounced tendency toward align-
ment, yielding a steady state pattern of a vortex with a highly
distorted core. Figure 2(d) shows configurations atS=2,
where the lattice of asters is present at all values ofe shown.
At large e, the tendency toward parallel alignment competes
with the tendency toward aster formation. At still larger val-
ues ofe, we obtain an aligned phase in the bulk(not shown),
reminiscent of the “bundles” seen in the experiments at large
motor concentration.
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Figures 3(a)–3(d) show bound motor density profiles cor-
responding to the microtubule arrangements of Figs.
2(a)–2(d). Lighter regions of the figure indicate regions of
larger density. Note that the bound motor density is concen-
trated at the centers of asters. In vortex configurations, the
motor density profiles for bound motors are far smoother. In
the “lattice of asters” configuration, the bound motor density
profiles peaks at the centers of the asters, decaying to a small
value at intermediate points far away from aster cores. The
profiles of free motor densities are visually very similar to
those for bound motors and are not shown here.

2. Parallel boundary conditions

We now discuss pattern formation in finite systems with
parallel boundary conditions[see Figs. 4(a)–4(d)]. These are
to be contrasted with Figs. 2(a)–2(d). Note that qualitatively
different sequences of patterns are stabilized at identical val-
ues of other parameters, depending on the boundary condi-

tions. This illustrates the sensitivity to boundary conditions
which obtains for sufficiently small system sizesL.

Figure 4(a) shows pattern formation with parallel bound-
ary conditions atS=0. A single vortex is obtained as a steady
state at all values ofe shown, i.e.,e=0.0, 0.5, 1.0, and 5.
Figure 4(b) shows patterns forS=0.05. The steady state here
is a single aster with tubules pointingoutward at the core,
but aligned with the configurations at the boundary.(We term
such configurations as “outward asters.”) Clearly these arise
as a consequence of the boundary conditions which favor
vortices and the parameter regime which favors asters. Ate
=5, the steady state is a well-formed, clean vortex. Figure
4(c) illustrates pattern formation atS=0.5, as a function ofe.
We see a tendency toward the formation of the lattice of
asters phase expected for largeS for sufficiently largee,
although indications of this are seen even for smalle.

At very highe, we obtain an unusual configuration which
we term a “flag.” In this configuration, tubules point radially
outward near the core while merging with the imposed par-

FIG. 2. Steady-state configurations of microtubules with reflecting boundary conditions. The parameters arem=0.5 andg f→b=gb→f

=0.5. Patterns are shown at differente at (a) S=0, (b) S=0.05,(c) S=0.5, and(d) S=2.
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allel microtubule configuration near the boundary. However,
the configuration appears to have a fourfold axis, in which
the axis lines are along the diagonal. Across this axis, the
microtubule orientation changes sharply. This fourfold sym-
metry reflects the fourfold symmetry of the simulation box.
Finally, Fig. 4(d) shows patterns formed atS=2. In this re-
gime, the lattice of asters is the stable steady state for all
values ofe.

Figures 5(a)–5(d) show bound motor density profiles cor-
responding to the microtubule arrangements of Figs.
4(a)–4(d). Note that the density distribution in single vortices
varies smoothly, consistent with theoretical expectations. The
profiles appear sensitive to the boundary and a fourfold ro-
tation axis can be seen in several of the patterns which in-
volve a single vortex. The patterns for nonzero and largeS
are very similar to those obtained for reflecting boundary
conditions with similar values of parameters. The profiles of

free motor densities are again visually very similar to those
for bound motors and are not shown here.

3. Discussion

Our results for the cases outlined in the preceding subsec-
tion are summarized as follows. For reflecting boundary con-
ditions, we obtain the general sequence aster→spiral→ vor-
tex atS=0. This sequence is obtained at fixed motor density,
as a function of the nonequilibrium parametere. With paral-
lel boundary conditions, the patterns formed are generically
vortices, although the region surrounding the core is progres-
sively distorted ase is increased. FiniteS favors the forma-
tion of a lattice of asters, as in large systems. We observe
some unusual configurations such as the “flag” configuration,
reflecting the fourfold symmetry of the simulation box and
the outward aster.

FIG. 3. Steady state bound motor density profiles with reflecting boundary conditions. The parameters arem=0.5 andg f→b=gb→f

=0.5. Profiles are shown at differente at (a) S=0, (b) S=0.05,(c) S=0.5, and(d) S=2. The darker regions indicate regions of lower motor
density.
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In our simulations, spirals arise as a consequence of the
competition between the vortex configurations favored lo-
cally for intermediate and large values ofe and reflecting
boundary conditions, which favor asters. Spirals offer the
best compromise between these and it is reasonable to expect
that such states should be more generically seen than either
asters or vortex states. Indeed, inspection of the configura-
tions associated with the “lattice of vortices” in Ref.[8] pro-
vides strong visual evidence for generic spiral states.

The bound and free motor profiles we obtain in the simu-
lations are consistent with expectations from our theoretical
analysis(see below). The characteristic sharp peaks in motor
density profiles associated with asters are replaced by far
more slowly varying profiles for vortices. The lattice of as-
ters, therefore has strong signals in the motor distribution
function. Appropriate experimental labeling of motors in this
phase should yield patterns and profiles closely similar to
those displayed here.

We have also examined the effects of varyingk, the
motor-independent self-alignment term for microtubules.

(While the value ofk appears to be too small in the experi-
ments to significantly affect pattern formation—there seems
to be no evidence that motor-independent alignment
occurs—we find that using small values ofk helps us to
generate somewhat smoother patterns.) As expected physi-
cally, for large k s=5.0d with both reflecting and parallel
boundary conditions, a phase which has tubules aligned
along a particular direction is formed at alle and S values.
The lattice of asters does not appear here. Atk=0.5, with
reflecting boundary conditions, the lattice of asters phase ap-
pears at sufficiently largeS. With parallel boundary condi-
tions, a single vortex appears at lowe andS=0, which trans-
forms into the lattice of asters phase at highS. In summary,
thek term competes with the motor-density-dependent align-
ment terms; in regimes in which it dominates, it favors par-
allel alignment of microtubules leading to a pattern consis-
tent with the boundary conditions. The effects of such a term
may be more noticeable in experiments performed at signifi-
cantly higher densities of microtubule than have been at-
tempted so far.

FIG. 4. Steady state configurations of microtubules with parallel boundary conditions. The parameters arem=0.5 andg f→b=gb→f

=0.5. Patterns are shown at differente at (a) S=0, (b) S=0.05,(c) S=0.5, and(d) S=2.

SELF-ORGANIZED PATTERN FORMATION IN MOTOR-… PHYSICAL REVIEW E 70, 031905(2004)

031905-7



B. Pattern formation in large systems

This section presents the results of our simulations in dif-
ferent regimes of parameter space on large systems than
those discussed above. These simulations are on systems of
sizeL=100–200, corresponding to physical length scales of
about 200–400mm. In these systems, generically, the nature
of the patterns formed appears to be independent of the
boundary conditions used whether such boundary conditions
are parallel, reflecting, or random. We may thus summarize
our results in a nonequilibrium “phase diagram”(Fig. 1),
illustrating the nature of patterns formed as our three main
parametersm, e, andS are varied.

Figures 6(a)–6(d) depict four stable configurations ob-
tained in different regimes of parameter space for anL

=100 lattice. Figure 6(a) shows a disordered arrangement of
microtubules obtained at very low motor densitiessm
=0.005d with e=0.5 andS=0. Figure 6(b) shows an aster-
vortex mixture obtained atm=0.01 at the same values ofe
andS. Note the presence both of well-formed asters and of
vortices in the configurations. This figure is to be contrasted
to Fig. 6(c), obtained atm=0.05, takinge=5 andS=0.001.
Note the absence of asters in this regime of parameter space.
Finally, Fig. 6(d), obtained withm=0.5, e=1, andS=1, il-
lustrates a lattice of asters, with asters being the only stable
defects present. We can vary the sizes and numbers of asters
obtained in configurations such as the one shown in Fig.
6(d), by changingS. A larger S yields a large number of

FIG. 5. Steady state bound motor density profiles with parallel boundary conditions. The parameters arem=0.5 andg f→b=gb→f =0.5.
Profiles are shown at differente at (a) S=0, (b) S=0.05,(c) S=0.5, and(d) S=2. The darker regions indicate regions of lower motor density.
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small asters, while smaller values ofS yield a smaller num-
ber of large asters[15].

Our results are summarized in Fig. 1 which shows the
states that dominate in the three-dimensional space spanned
by e, S, and m. For S=0, we obtain aster-vortex mixture
states at low motor density, which become a lattice of vorti-
ces at somewhat higher motor densities. Large values of
e seù1d yield well-formed vortexlike configurations while
smalle yields structures better described as aster-vortex mix-
tures. At intermediate values ofe andm, spirals rather than
vortices appear to dominate. At largem, with S=0 and large
e, a single vortex is obtained[14].

For nonzero but smallS, these states appear to continue
out of theS=0 plane but are rapidly replaced by a lattice of
asters for largerS. A cut of Fig. 1 at finiteSyields disordered
states at smallm and a lattice of asters at largerm. We can
thus understand the sequence of patterns formed upon in-
creasingm in mixtures of kinesin constructs with microtu-
bules in terms of a trajectory which begins in theS=0 (or S

sufficiently small) plane in the disordered phase and transits
between the aster-vortex mixture and the lattice of vortices
(both of which lie in this plane) as m is increased. Asm
increases further and the effects of theS term become impor-
tant, such a trajectory moves out toward nonzeroS, encoun-
tering the lattice of asters.

We have also examined the effects of changing the motor
processivity, a quantity proportional to the ratio ofg f→b to
gb→f. Smaller values of this ratio are appropriate to molecu-
lar motors such as nonclaret disjunctional(NCD). At g f→b
=0.005,gb→f =0.05, we find that the disordered regime
shown in Fig. 1 expands, so that at equivalent values ofm
disordered states occupy much of the domain associated pre-
viously with the lattice of vortices. Whereas kinesins follow
the sequence disordered – lattice of vortices–aster-vortex
mixture–lattice of asters asm is increased, a mixture of mi-
crotubules with NCD motors bypasses the lattice of vortices
altogether, transiting directly from the disordered state to the
lattice of asters in the experiments[8]. In terms of Fig. 1, the

FIG. 6. Steady state configurations in our model at different parameter values(see text): (a) Disordered states obtained at very low motor
densities(m=0.005e=0.5 andS=0); (b) aster-vortex mixture obtained at(m=0.01,e=0.5 andS=0); (c) lattice of vortices at(m=0.05,e
=5 andS=0.001); (d) lattice of asters obtained at(m=0.5, e=1 andS=1).
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expanded regime of disordered states for the NCD motor
suggests that patterns such as the lattice of vortices and the
aster-vortex mixture may be inaccessible at the motor densi-
ties at which the experiments are done, since the effects of
the S term might be expected to dominate at largem.

Discussion

A large number of disordered steady states are seen in the
simulations. Physically, these states arise because the domi-
nant contribution to the stiffness to distortions in theT field
comes from the motors; it is low in regions depleted of motor
density and large in regions where many motors are present.
Since bound motors are convected along the local tubule
direction, large inhomogeneities in the local motor density
occur in the final steady states(such as in the “core” of the
asters), with the precise character of the final configuration
dependent on the initial condition. Such “arrested” states
have also been discussed in other contexts earlier, as well as
in this particular one by Lee and Kardar[14]. Thus, it is
natural that the patterns obtained at low motor densities
should then be inhomogeneous and disordered, and that a
large number of steady states should thus be generated, de-
pending on the initial pattern of microtubules and of motors.

We now comment on the topological attributes of the pat-
terns we observe, since asters and vortices are conventionally
thought of as topological objects. We stress the following
point: Describing configurations usefully in terms of smooth
and singular(topological) deformations presupposes a uni-
form minimum energy state. To ensure this, the “spin stiff-
ness” or equivalently the elastic cost for deformations must
be nonzero. In this problem, the local motor density provides
the dominant contribution to the stiffness. In regions where
such motor densities are either low or vanish altogether, or
where weak noise is sufficient to suppress local ordering,
there is simply no penalty for making arbitrary deformations
in the microtubule field. A second difficulty with a purely
topological approach to the formation of patterns is that as-
ters and vortices are topologically speaking, entirely equiva-
lent. (Take an aster and rotate all arrows by 90° — a vortex
is then generated.) However, the motor density fields associ-
ated with asters and vortices are not identical. This provides
a mechanism for stabilizing either asters or vortices in dif-
ferent regimes of parameter space, since the motor density
fields are also dynamical fields and obey their own respective
equations of motion. As regards how these may be distin-
guished: asters and vortices are represented by local regions
in which the coarse-grained microtubule field is either repre-
sented by a purely radial unit vectorr̂ or by a purely tangen-
tial one û respectively. Such configurations have no global
topological significance, as explained earlier but can easily
be identified locally, either numerically or even visually(as
in the experiments), as the pictures of Fig. 6 corroborate.

There are other defects which are also seen in this model.
We note that all the defects seen in Fig. 6 can be described
by usfd=S3f+C in cylindrical polar sr ,fd coordinates.
HereS is the winding number, +1 for asters(with C=0) and
vortices(with C=p /2). All other defects seen in Fig. 6 are
obtained by settingS=−1 and choosingC in the intervalC
=0 to p /2. However, it is equally obvious from the figure

that certain classes of defects dominate over others and that
is precisely what our approximate classification of the differ-
ent states highlights[25].

IV. ANALYTIC RESULTS FOR MOTOR PROFILES IN
ASTER AND VORTEX CONFIGURATIONS

We now present an analytic calculation of free and bound
motor density profiles in vortex and aster configurations. We
fix single vortex and aster configurations of microtubules and
solve for steady state free and bound motor densities in the
presence of the fixed microtubule configuration[26].

We find steady state solutions of Eqs.(4) and (5) by set-
ting the time derivatives to zero i.e.,]tmf =]tmb=0. Adding
and subtracting these equations, we obtain

¹2mf − = · smbTd = 0, s8d

¹2mf + sgb→fmb − g f→b mfd = 0. s9d

The first of these equations implies that

=mf = mbT + C, s10d

whereC is an arbitrary vector whose divergence= ·C=0.

A. Single vortex, i.e., T=û

Assuming radial symmetry, we may writemf

=mfsrdandmb=mbsrd. Let C=cr r̂ +cuû. Equation (8) then
implies

]rmf r̂ = mbû + cr r̂ + cuû. s11d

Hence,

cr = ]rmf andcu = − mb. s12d

The constraint of zero divergence forC yields

]rcr +
cr

r
+

1

r
]u cu = 0. s13d

Sincecu=−mbsrd is purely radial

]u cu = 0. s14d

Equation(13) then becomes a radial equation

]rcr +
cr

r
= 0. s15d

Using cr =]r mf, we obtain

¹2mf = 0, s16d

which supports solutions of the form

mfsrd = c1 + c2 lnsrd, s17d

wherec1 andc2 are constants to be determined by boundary
conditions and normalization.

Equation(9) now simplifies to

gb→f mb − g f→bmf = 0 s18d

which yields
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mbsrd =
g f→b

gb→f
fc1 + c2 lnsrdg. s19d

We must determine the constantsc1 andc2. There is no radial
current of motors(bound or free) in the vortex configuration.
The condition of no radial current of free motors at the
boundary implies

]rmfsrd = 0 at r = L, s20d

therefore implying thatc2=0. The constantc1 is determined
by the normalization

E d2rfmfsrd + mbsrdg = N. s21d

In the vortex configuration

E d2rS1 +
g f→b

gb→f
Dc1 = N, s22d

which gives

c1 =
n

2p

1

s1 + g f→b/gb→fd
, s23d

with n the density of motorN/L2.
The result above holds for purely tangential boundary

conditions, consistent with the symmetry of the vortex. It
will be modified with respect to the simulation results both
as a consequence of the(Cartesian) latticization used to dis-
cretize the equations as well as by the fourfold symmetry of
the simulation box. Both these factors will lead to a combi-
nation of the logarithmic and constant solutions above.

B. Single aster solution, i.e., T=−r̂

We again assume radial symmetry for the bound and free
motor densities. We chooseC= fsrdr̂, with fsrd such thatC is
divergenceless, i.e.,¹ ·C=0. We thus obtainfsrd=c0/ r, with
c0 a constant. The radial current of free motors iss−]rmfdr̂
while the radial current of bound motors iss−mbdr̂. The
boundary condition that the total motor current vanishes at
the boundary implies

]rmf + mb = c0/r = 0 at r = L. s24d

This ensures thatc0=0 and therefore

]rmfsrd = − mbsrd. s25d

Equation(9) becomes

] r
2mf + S1

r
− gb→fD]r mf − g f→bmf = 0. s26d

This is a second order differential equation whose solution is
completely specified if the value of the function and of its
derivative at the boundary are supplied. Given these bound-
ary conditions, the free motor density can be obtained via a
numerical solution using the Runge-Kutta method. The
bound motor density is also easily determined via a radial
derivative of the free motor density.

We now derive exact and asymptotic expressions for mo-
tor densities in the aster geometry. The general solution to

the equation above is a combination of confluent hypergeo-
metric functions and has the form

mfsrd = esgb→f−Îg b→f
2 +4gf→bdr/2Fc2F1S1

2
−

gb→f

2Îg b→f
2 + 4g f→b

,

1,Îg b→f
2 + 4g f→brD

+ c1US1

2
−

gb→f

2Îg b→f
2 + 4g f→b

,1,

Îgb→f
2 + 4g f→brDG . s27d

The functions 1F1s1/2−gb→f /2Îg b→f
2 +4g f→b,1 ,

Îg b→f
2 +4g f→brd and Us1/2−gb→f /2Îg b→f

2 +4g f→b,1 ,
Îg b→f

2 +4g f→brd are the two solutions of the confluent hy-
pergeometric Kummer equation. It is useful to define a quan-
tity p given by

p =
1

2S1 −
gb→f

Îg b→f
2 + 4g f→b

D . s28d

Note that

0 ø p ø 0.5, s29d

with gb→f ,g f→bù0. The argument of the exponent in Eq.
(27) is always negative for allgb→f ,g f→bù0. The coeffi-
cientsc1 andc2 are determined by boundary and normaliza-
tion conditions.

The boundary condition is that there is no total motor
current at the boundary, i.e.,

]rmfsrd + mbsrd = 0 at r = L, s30d

since the radial current of bound motors in the aster configu-
ration is J=−mbsrdr̂. This can be used to determinec2 in
terms ofc1. We find that on imposing the no-current bound-
ary condition,c2 is very small compared toc1 and is signifi-
cant only when the system size is of order the “correlation”
length over which the density decays. We will assume(see
below) that we can setc2=0 to yield physically admissible
solutions.

The constantc1 can now be fixed by the normalization
condition which requires the total number of motors
sbound+freed be constant,

E
0

L

d2rfmbsrd + mfsrdg = N. s31d

whereN is the total number of motors.
A physical argument for neglecting the1F1s1/2

−gb→f /2Îg b→f
2 +4g f→b,1 ,Îg b→f

2 +4g f→brd term in com-
parison with the Us1/2−gb→f /2Îg b→f

2 +4g f→b,1 ,
Îg b→f

2 +4g f→b rd is the following. A power series expan-
sion yields
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1Fsp,q,xd = o
n=0

`
spdn

sqdn

xn

n!
, s32d

wherespdn=sp+n−1d ! / sp−1d! and spd0=1. This function is
a monotonically (exponentially) increasing function ofr.
Such a density distribution implies a motor density per unit
area which increases asr is made arbitrarily large, a solution
which is clearly untenable on physical grounds. On the other
hand,Us1/2−gb→f /2Îg b→f

2 +4g f→b,1 ,Îg b→f
2 +4g f→brd de-

creases monotonically with increasingr. Hence we retain
only the Us1/2−gb→f /2Îg b→f

2 +4g f→b,1 ,
Îg b→f

2 +4g f→brd part of the solution formfsrd.
To derive the asymptotics we begin with the integral rep-

resentation

Usp,q,xd =
1

GspdE0

`

e−xttp−1s1 + tdq−p−1 dt. s33d

We relabel sÎg b→f
2 +4g f→bdr =z and 1

2s1
−gb→f /Îg b→f

2 +4g f→bd=p for notational convenience. We
then obtain

Usp,1,zd =
1

GspdE0

` e−zttp−1

s1 + tdpdt. s34d

We now change variables tou=zt. The integral is then

1

Gspd
1

zpE
0

` e−uup−1

s1 + u/zdpdu. s35d

Sincep is a small number between 0 and 0.5 we may expand
the denominator binomially. The first term givesGspd and
subsequent terms converge. Hence, in the largez limit, the
integral is justGspd. Therefore,

mfsrd = c1
e−r/j

sg b→f
2 + 4g f→bdp/2r p ,

mbsrd = c1
e−r/j

sg b→f
2 + 4g f→bdp/2r pSp

r
+

1

j
D ,

where the inverse of the “correlation” length is defined as

j−1 = U sgb→f − Îsg b→f
2 + 4g f→bd
2

U = U pgb→f

2p − 1
U . s36d

The correlation lengthj and the power-law exponentp de-
pend ong f→b andgb→f. We see that the bound motor density
in the aster case has an exponential fall modulated by a
power-law tail instead of the pure exponential falloff pre-
dicted in the LK model.

These results can, in principle, be compared directly to
the experiments of NSM in Ref.[15], but for one difficulty.
Out of the aster configurations generated in the experiments
in steady state, NSM specificallyselectthose configurations
in which the aster densities decay most closely as 1/r away
from the aster core. This then enables a direct fit to their
theoretical predictions. In contrast, the theoretical predictions
here are in the limit where the microtubule density profile is
constant, so that fluctuations in the density of microtubule

can be neglected(see the Introduction for a discussion of this
point). Thus, while inserting appropriate numbers for the on-
off rates would generate power-law profiles closely resem-
bling those of NSM, at least not too far away from the core,
a direct comparison to these particular experiments may not
be feasible.

Another limit in which an exact answer can be obtained is
the following. If there is no interconversion between the two
species of motors(i.e., gb→f =g f→b=0), the equations of mo-
tion for free motors and bound motors decouple. The num-
bers of free motors and bound motors in the system are then
conserved independently. The free motor density equation
supports solutions of the formmfsrd=c1+c2 lnsrd, wherec1

and c2 are constants of integration. Imposing a vanishing
current of free motors at the boundary constrainsc2=0. The
other constantc1 can be fixed from the condition that the
total number of free motors is constant. The bound motor
density then has the simple power law behaviormbsrd,1/r.

C. Comparison of the analytic results with simulations

These analytic results can now be compared to the results
of direct simulations of the dynamical equations for single
aster and vortex structures. We chooseT = r̂ in the full equa-
tions of motion for the motor densities given in Eqs.(4) and
(5) to represent the aster. We then evolve these equations in
time until the steady state is reached. We compare the motor
profiles obtained in such simulations to profiles obtained
from solving the ordinary differential equation at steady state
[Eq. (26)] by a fourth order Runge-Kutta method. Free and
bound motor densities at the boundary of the system are
obtained by solving the full time-dependent equations[Eqs.
(4) and (5)]. These are used as boundary value input to the
Runge-Kutta procedure to facilitate direct comparison be-
tween simulation and analytic results.

Using the symmetry of the scaled equations Eqs.(4) and
(5) discussed in Sec. II, we normalize the densities obtained
by these two methods to the same constant value before
comparing them. Figure 7 shows a plot of the distribution of
bound motors in a single aster obtained from(i) the direct
simulation,(ii ) the Runge-Kutta method, and(iii ) the exact
solution outlined in the previous section. The parameter val-
ues areg f→b=gb→f =0.5 andm=0.5. Figure 8 shows the
comparison between simulations, the Runge-Kutta method,
and the exact solution for the free motor density profiles.
While the data are noisy, particularly for the bound motor
densities, the agreement with the theoretically predicted re-
sult is satisfying.

Figure 9 shows the distribution of bound motors in a vor-
tex configuration obtained by fixingT = û in the full equa-
tions of motion for the motor densities given in Eqs.(4) and
(5). The plot of mbsrd vs r illustrates the slow, essentially
logarithmic variation of the motor densities in such configu-
rations, consistent with the analytic approach of this paper
and of earlier work.

D. Saturation effects and the stabilization of asters

So far, in our analysis, we have ignored the effects of
interactions between bound motors. These motors, in their
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physical setting, have a finite size and move on a one-
dimensional track, the microtubule. It is thus reasonable to
expect that interactions between bound motors should be-
come increasingly important at large motor densities. One
can account for these interactions by simply requiring that
more than one motor cannot occupy the same volume in
space at the same time. Such “excluded volume” interactions
have been used in earlier models for collective effects in
molecular motor transport[27].

At the simplest level, accounting for such interactions
leads to a nonlinear(in general, also nonmonotonic) depen-

dence of the motor current on the density. This can be incor-
porated in our calculation by choosing a motor current of the
form

Jmb
= Amb fsmbdT . s37d

The function fsmbd should, in principle, be calculated from
an underlying microscopic model. We will circumvent this
necessity by simply assuming a convenient form purely for
illustrative purposes which is(a) consistent with the require-
ment thatA (the velocity) is density independent for small
mb densities and(b) saturates for largemb. One such choice
is

fsmbd = 1 − tanhsmb/msatd. s38d

The valuemsat limits the current of bound motors. When
msat@mb then fsmbd→1 and we recover results discussed
earlier. Whenmsat!mb, the current reduces asfsmbd→0. In
the aster casesT =−r̂d, Eq. (25) becomes

]r mfsrd = − mbsrdfsmbd. s39d

Therefore, the free motors obey

]r
2mf + S1

r
− gb→f/fsmbdD]rmf − g f→bmf = 0. s40d

This equation can now be solved as a boundary value prob-
lem using the methods described earlier.

Figure 10 shows bound motor densitiesmbsrd as a func-
tion of r for different values ofmsat. We have normalized
each of the plots to the same value at the origin. We choose
msat=0.001, 0.1, 1, and 1000. An increasedmsat implies
smaller saturation effects. The plots shown in Fig. 10 are
normalized to unity atr =1. Observe that reducingmsat leads
to far smoother variations of the bound motor density. Data

FIG. 7. Density profiles for bound motor densities(plotted in
dimensionless units). The profiles are shown for an aster in the
regimeg f→b=gb→f =0.5, withS=0. The density is chosen to be 0.5.
The x axis denotes the separation from the center of the aster in
units of the lattice spacing.

FIG. 8. Density profiles for free motor densities plotted in di-
mensionless units. The profiles are shown for an aster in the regime
g f→b=gb→f =0.5 andS=0. The density is chosen to be 0.5. Thex
axis denotes the separation from the center of the aster in units of
the lattice spacing.

FIG. 9. Density profiles for bound motor densities plotted in
dimensionless units. The profiles are shown for a vortex in the
regimeg f→b=gb→f =0.5 andS=0. The density is chosen to be 0.5.
The x axis denotes the separation from the center of the vortex in
units of the lattice spacing.
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for the associated free motor densities are similar and are not
shown here.

It is tempting to directly link such saturation effects with
the experimental observation of bundles of microtubules at
large motor densities. Physically, while alignment would be
favored at large motor densities, saturation should set limits
on such alignment, perhaps favoring instead the locally
aligned “bundles” seen at largem. Unfortunately, we have
been unable to stabilize solutions of the full set of equations
governing pattern formation incorporating saturation effects
and so are unable to test this interesting possibility directly.

V. RELATIVE STABILITY OF ASTERS
AND VORTICES

Lee and Kardar rationalize the stability of vortices(at S
=0) compared to asters in the following way. Ife=1, the
right-hand-side of the tubule equation derived by LK can be
interpreted as the functional derivative of a “free energy.”
The motor density profile plays the role of a spatially modu-
lated stiffness. This enables the calculation of the relative
“free energies” of aster and vortex states. Smoother motor
density profiles lead to lower “free energies.” The reduced
energy of the vortex configuration, in which motor density
profiles decay logarithmically, implies its increased stability
as compared to asters, for which motor density profiles decay
exponentially away from the core.

We adapt the Lee-Kardar argument to our model, using
our analytic results for bound motor density profiles in asters
and vortices. In Fig. 11, we show themodulusof the differ-
ence in energy of a single vortex and a single aster as a
function of the system size for our model and for the Lee-

Kardar model. We work at the same value of total motor
densitym in each case, settinge=1. Since the magnitude of
“energy” scales in the two models differs, the behavior of the
energy difference is most clearly seen using a logarithmic
scale for they axis. The point at which the vortex energy is
reduced below the aster energy appears as the minimum in
the curve. From the position of this minimum, we see that
the crossover length scale above which asters are unstable
with respect to vortices is smaller in the Lee-Kardar model as
compared to our model.

The fact that this crossover length scale lies between 50
and 100 in our units for length rationalizes our observation
that the stable asters we obtain forL=50 are replaced by
stable vortices forL=100. These results support, and add
further credence to, the Lee-Kardar argument, at least in the
S=0 case. With finiteS, of course, vortices are disfavored
altogether and generating stable aster structures is no longer
an issue.

We now provide a qualitative explanation of three basic
features of motor and microtubule arrangements at zero and
nonzeroS. These are(i) the absence of vortices at nonzeroS,
(ii ) the presence of a small number of large asters at smallS,
vs (iii ) the presence of a large number of small asters which
increases asS for largerS. Our approach is approximate and
qualitative, based on “free energy” type arguments, analo-
gous to those of Lee and Kardar.

Consider the limit in whiche=1 and the=m term is ob-
tained through a functional differentiation of the “free-
energy” term

FIG. 10. Effect of saturation on the motor density profile in
asters. As the effect of saturation is increased, the profile is
smoother. The curves are labeled from left to right as
msat=1000,1.0,0.1,0.0001. Thex axis denotes the separation from
the center of the aster in units of the lattice spacing; they axis is
plotted in dimensionless units.

FIG. 11. A plot of the difference in energies(in dimensionless
form) of a single vortex and a single aster versus the system sizeL.
The parameter values arem=1, e=1, andS=0. They axis (system
size in dimensionless units) is plotted on a logarithmic scale. The
point at which the energy of the vortex becomes lower than the
energy of the aster shows up as the minimum in this curve. In the
Lee-Kardar model the length scale at which the vortex becomes
lower in energy is about four times smaller than in our model, for
this choice of parameter values.
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ES=E d2xSa = ·T +
S

a
mbD2

. s41d

A functional derivative ofF with respect to theT field gen-
erates the termsa2= s= ·Td and S=mb. In the limit that a
→0, we obtain the=mb term of our equation of motion.(We
prefer to work with a nonvanishing, although infinitesimal,
value ofa and to consider the effects of varyingS, to avoid
the singular behavior that arises in thea=0 limit.) Our in-
troduction of the term inS was, in fact, motivated by the
observation that motors moving along two initially parallel
microtubule configurations, act to bring them together, favor-
ing a nonzero divergence. This physics, although incorpo-
rated in the simulations of Nédélécet al., is ignored in the
LK model.

The full “free energy” for theT field is

E =E d2xF−
1

2
auTu2 +

1

4
buTu4 +

1

2
mbsrds=Td2

+
1

2
Sa = ·T +

S

a
mbD2G . s42d

We fix the modulus ofT, thereby eliminating the first two
terms, and concentrate on the relative energetics of states
governed by the last two terms of the equation.

For the Lee-Kardar model, withS=0, the stability of vor-
tices over asters can be understood from simple comparisons
of the relative energies of vortices and asters. First consider
the case of a single aster. We choose a simplified profile for
bound motors, assuming

mb = HA, r ø j,

0, r . j.
s43d

This represents, although approximately, the fact that micro-
tubule densities are significant only over distances of orderj
from the core of the aster. The factorA is a normalization
factor which ensures a fixed number of motorsN in a system
of typical sizeL. We will work with a fixed overall density of
motors,N/L2 and examine the limit in whichL→`.

In theS=0 limit, the energyEA of the aster is dictated by

EA
0 , E

a

L

d2r mbsrds=Td2 , A lnsj/ad, s44d

where we cut the integral off at a lower limita corresponding
to a microscopic coarse-graining scale and have used the fact
that s=Td2=1/r2 for both asters and vortices. We now fixA
by normalization: sinceea

Lmsrdd2r =N=nL2,Aj2, we obtain
E A

0 ,nL2 lnsj /ad /j2. (Accounting for a more complex decay
of the bound motor density does not change this result quali-
tatively.) Thus, for a system of sizeL sL@jd, imposing a
fixed densityof motor yields a quadratic increase of the en-
ergy with system sizeL.

We now repeat the same argument with a single vortex.
Here, the relatively slower variationmbsrd,C1+C2 lnsr /ld
yields Ev

0,ea
Lfmbsrd / r 2gr dr , lnsL /ad, up to further loga-

rithmic corrections. The prefactor is thenindependentof sys-
tem size, leading to an overall logarithmic increase of energy

with system size, a far weaker function than the quadratic
dependence onL of the aster. This implies that for suffi-
ciently largeL the energy of the isolated vortex falls below
that of a single aster, in systems of sufficiently large sizes, as
first suggested by Lee and Kardar.

How are these arguments modified at finiteS? Since
simulations indicate that the state obtained at finite positiveS
is a “lattice of asters” with the scale of the aster decreasing as
S is increased, we will compare the energies of single vortex
configurations with energies for an assembly of asters
(“miniasters”) of typical sizes. We imagine that theL3L
system is subdivided intos3s units and place an aster in
each one of these subunits. For a system of linear sizeL, the
number density of such asters isf. For inward pointing as-
ters, as obtained in our calculation, the divergence= ·T =
−1/r. Consider first the term

ES,E d2xFa = ·T +
S

a
mbsrdG2

. s45d

Now miniasters(i) are assumed small and(ii ) obey boundary
conditions that differ from the case of the single system-size
spanning aster. Bound motor profiles are then, in general,
combinations of the two solutions obtained earlier rather
than the single one which yielded the exponentially damped
form used in our earlier analysis. Also, the close proximity of
the many miniasters formed indicates a slower than exponen-
tial variation of the bound motor densities about each one.
Let usassumethat motor densities in such miniasters adjust
in order that the following motor density profile is obtained:
mbsrd,a2/Srsr øsd andmbsrd,0sr .sd. This ensures that
the contribution of the term above is canceled. Note that the
bulk of the contribution to the energy of a miniaster comes
from the regionr øj; the contributions from larger regions is
negligible providedj,s.

We first calculate the energyE1mA of a single such mini-
aster configuration. This is obtained from the integral

E1mA=E
a

L

d2rmbsrds=Td2 ,
a2

S
E

a

s

dr
1

r2 ,
a2

Sa
. s46d

The number of motors in a single miniaster is obtained from

N1mA, E
a

s

msrdd2r ,
a2s

S
. s47d

The total energyEmA
T of the system of miniasters is then

EmA
T ,

a2

Sa
fL2. s48d

The constraintn=fN1mA yields

f ,
S

a2s
, s49d

illustrating how the number of asters increases asS is in-
creased. The total energy corresponding to a fixed areal den-
sity of motorsn is then easily derived as

EmA
T ,

nL2

sa
. s50d
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We now compare this with the energy of a single vortex at
nonzeroS, computed assuming that the motor density pro-
files are the same as in the case in whichS was zero. This is
obtained asEv,S2n2L2/a2, yielding the ratio

EV

EmA
T ,

nS2sa

a2 . s51d

We may also compare the energy of an assembly of mini-
asters with the energy of a single aster. Arguments similar to
those above yieldEA,n2S2L2/a2, and thus

EA

EmA
T ,

nS2sa

a2 . s52d

Note that both these arguments indicate that asa is re-
duced towards zero(or S is increased from a nonzero value),
both single asters and single vortices are unstable to an array
of miniasters. At infinitesimala, providedS is nonzero, our
results indicate that the number density of miniasters in-
creases withS (linearly in the simple argument given here),
with the size of each aster decreasing in proportion. The
arguments given here rest on the assumption that the motor
distribution in asters adjusts so as to minimize the cost for
the term involvingS. No such adjustment can lower the en-
ergy of single vortex configurations.

VI. CONCLUSIONS

This paper presents a hydrodynamic theory of pattern for-
mation in motor-microtubule mixtures, studying both the ef-
fects of confinement as well as pattern formation in uncon-
fined geometries. We show that the influence of the
boundaries on pattern formation can be considerable, by il-
lustrating how either asters or vortices can be formed de-
pending on how the orientation of microtubules is fixed at
the boundary. We have explored the parameter space of
e , m, andSsystematically, describing the variety of configu-
rations obtained. We obtain density distributions of free and
bound motors corresponding to the final microtubule con-
figurations. Such plots may be compared directly to experi-
ments. We have compared analytic predictions for motor
density profiles in isolated vortices and asters with simula-
tion data. We have also presented results for pattern forma-
tion in much larger systems, in which the effects of bound-
aries were minimal.

One technical improvement would be to account for
variations in the localdensityof microtubule, as opposed to
only their orientation. We could then account for the density
dependence of quantities such asg f→b. More information
from experiments, performed in confined geometries using
motors with a range of different processivities would also be
useful in clarifying some of the issues which relate to the
simulations described here. It would also be interesting to
search for the novel configurations we obtain here in differ-
ent regimes of parameter space, such as the “flag,” the dis-
torted vortex and the “outward aster.”

As we have emphasized, the set of hydrodynamic equa-
tions we motivate and use allow for a minimal yet complete
description of the patterns formed in mixtures of motors and

microtubules. We have suggested elsewhere[12] that it may
be useful to think of spindle formation itself as a pattern
formation problem which can be modeled using continuum
hydrodynamical equations in a small number of variables.
One intriguing possibility is that the bipolar aster conforma-
tion of microtubules seen in the spindle is associated with
parameters in our model in which the formation of a small
number of large asters is favored. It is tempting to think of
changes in the structure of the spindle as mitosis proceeds as
reflecting the dynamics of an underlying few parameters in
simplified models such as this. Further work relating to this
program is in progress.

ACKNOWLEDGMENTS

We thank Y. Hatwalne, Madan Rao, Sitabhra Sinha, and
G. Date for useful and illuminating discussions. P.B.S thanks
IBM for providing computational facilities under a shared
university research grant.

APPENDIX: NUMERICAL METHODS

We solve Eqs.(4)–(6) numerically on anL3L square grid
indexed bysi , jd with i =1, . . . ,L and j =1, . . . ,L [24]. The
equation for the free motor density is evolved through a Eu-
ler scheme,

mfst + Dtd = mfstd − Dt = ·Jsmfd − g f→bmf + gb→f mb,

sA1d

where

Jx„mfsi, jd… = fmfsi + 1,jd − mfsi − 1,jdg/2d, sA2d

Jy„mfsi, jd… = fmfsi, j + 1d − mfsi, j − 1dg/2d. sA3d

The grid spacing isdx=dy=d=1 and the time stepDt=0.1.
At the boundaries, we impose the boundary condition that no
current(either of free or bound motors) flows into or out of
the system. This condition is easily imposed by setting the
appropriate current to zero.

A related discretization is used for the bound motor den-
sity equation

]tmb = − = · smbTd + g f→bmf − gb→f mb, sA4d

where, in the bulk, partial derivative terms are discretized as

]xsmbTd = fmbsi + 1,jdTxsi + 1,jd − mbsi − 1,jdTxsi − 1,jdg/2d

sA5d

with a similar equation used for they component.
TheT equation is differenced through the alternate direc-

tion implicit operator splitting method in the Crank-
Nicholson scheme. At the first half time step

srI − LxdT x
n+1/2 = srI + LydT x

n, sA6d

where r =2d 2/dt and I is the identity matrix. The super-
scripts onTx indicate the time step at which these quantities
are calculated. The operatorsLx andLy are given by

Lx = mb] x
2 + s]xmbd]x + Ss]xmbd, sA7d
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Ly = 2Cs1 − T 2d + mb] y
2 + s]ymbd]y + Ss]ymbd. sA8d

The first and second derivatives evaluated for a function
fsi , jd on a lattice pointsi , jd in the bulk are

]x fsi, jd = ffsi + 1,jd − fsi − 1d, jd/2d, sA9d

] x
2 fsi, jd = ffsi + 1,jd − 2fsi, jd + fsi − 1,jdg/d 2,

sA10d

with similar equations for they derivatives.
At the second half time step,

srI − LydT x
n+1 = srI + LxdT x

n+1/2, sA11d

where

Lx = mb] x
2 + s]xmbd]x + Ss]xmbd, sA12d

Ly = mb] y
2 + s]ymbd]y + Ss]ymbd. sA13d

A similar scheme is used for differencing the equation for
the Ty component. Our simulations are on lattices of several
sizes, ranging fromL=30 toL=200. We vary the motor den-
sity in the range 0.01 to 5 in appropriate dimensionless units.

We work with two different types of boundary conditions on
theT field. In the first, which we refer to as reflecting bound-
ary conditions, the microtubule configuration at the boundary
sites is fixed to point along the inward normal. In the second,
which we refer to as parallel boundary conditions, microtu-
bule orientations at the boundary are taken to be tangential to
the boundary. In both these sets of boundary conditions, the
state of the boundaryT vectors is fixed and does not evolve.
The total number of motors, initially divided equally be-
tween free and bound states and distributed randomly among
the sites, is explicitly conserved.

We add weak noise, primarily in theT equation of mo-
tion, to ensure that true steady states are reached in our simu-
lations. This noise is drawn from a Gaussian distribution
with zero mean,d-function correlated in time, and thus with
a strength specified solely by its variance. Such noise simu-
lates thermal and nonequilibrium fluctuations, such as arise
from the stochastic process of ATP hydrolysis by motors.
Large noise strengths wipe out patterns, yielding homoge-
neous states. We have also experimented with a variety of
initial states to ensure that the qualitative features of the pat-
terns we obtain as stable steady states are, indeed, robust.
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